Microcombs-optical frequency combs generated in microresonators-have advanced tremendously in the past decade,and are advantageous for applications in frequency metrology,navigation,spectroscopy,telecommunications,and...Microcombs-optical frequency combs generated in microresonators-have advanced tremendously in the past decade,and are advantageous for applications in frequency metrology,navigation,spectroscopy,telecommunications,and microwave photonics.Crucially,microcombs promise fully integrated miniaturized optical systems with unprecedented reductions in cost,size,weight,and power.However,the use of bulk free-space and fiber-optic comp on ents to process microcombs has restricted form factors to the table-top.Taking microcomb-based optical frequency synthesis around 1550 nm as our target application,here,we address this challenge by proposing an integrated photonics interposer architecture to replace discrete components by collecting,routing,and interfacing octave-wide microcomb-based optical signals between photonic chiplets and heterogeneously integrated devices.Experimentally,we con firm the requisite performa nee of the individual passive elements of the proposed interposer一octave-wide dichroics,multimode interferometers,and tunable ring filters,and implement the octave-spanning spectral filteri ng of a microcomb,central to the in terposer,using silicon n itride phot onics.Moreover,we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling,indicating a path towards future system-level consolidation.Fin ally,we numerically confirm the feasibility of operating the proposed in terposer synthesizer as a fully assembled system.Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems and can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.展开更多
基金the Defense Adva need Research Projects Agency(DARPA-DODOS)NIST-UDiversity of Maryland(70NANB10H193)National Institute of Standards and Technology(NIST-on-a-chip).A.R.and X.L.gratefully ack no wledge support un der the Cooperative Research Agreement between the University of Maryland and NIST-CNST,Award no.70NANB10H193.
文摘Microcombs-optical frequency combs generated in microresonators-have advanced tremendously in the past decade,and are advantageous for applications in frequency metrology,navigation,spectroscopy,telecommunications,and microwave photonics.Crucially,microcombs promise fully integrated miniaturized optical systems with unprecedented reductions in cost,size,weight,and power.However,the use of bulk free-space and fiber-optic comp on ents to process microcombs has restricted form factors to the table-top.Taking microcomb-based optical frequency synthesis around 1550 nm as our target application,here,we address this challenge by proposing an integrated photonics interposer architecture to replace discrete components by collecting,routing,and interfacing octave-wide microcomb-based optical signals between photonic chiplets and heterogeneously integrated devices.Experimentally,we con firm the requisite performa nee of the individual passive elements of the proposed interposer一octave-wide dichroics,multimode interferometers,and tunable ring filters,and implement the octave-spanning spectral filteri ng of a microcomb,central to the in terposer,using silicon n itride phot onics.Moreover,we show that the thick silicon nitride needed for bright dissipative Kerr soliton generation can be integrated with the comparatively thin silicon nitride interposer layer through octave-bandwidth adiabatic evanescent coupling,indicating a path towards future system-level consolidation.Fin ally,we numerically confirm the feasibility of operating the proposed in terposer synthesizer as a fully assembled system.Our interposer architecture addresses the immediate need for on-chip microcomb processing to successfully miniaturize microcomb systems and can be readily adapted to other metrology-grade applications based on optical atomic clocks and high-precision navigation and spectroscopy.