期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Elite,transformable haploid inducers in maize
1
作者 Brent Delzer dawei liang +22 位作者 David Szwerdszarf Isadora Rodriguez Gonzalo Mardones Sivamani Elumalai Francine Johnson Samson Nalapalli Rachel Egger Erin Burch Kerry Meier Juan Wei Xiujuan Zhang Huaping Gui Huaibing Jin Huan Guo Kun Yu Yubo Liu Becky Breitinger Ana Poets Jason Nichols Wan Shi David Skibbe Qiudeng Que Timothy Kelliher 《The Crop Journal》 SCIE CSCD 2024年第1期314-319,共6页
The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome edit... The introduction of alleles into commercial crop breeding pipelines is both time consuming and costly.Two technologies that are disrupting traditional breeding processes are doubled haploid(DH)breeding and genome editing(GE).Recently,these techniques were combined into a GE trait delivery system called HI-Edit(Haploid Inducer-Edit).In HI-Edit,the pollen of a haploid inducer line is reprogrammed to deliver GE traits to any variety,obviating recurrent selection.For HI-Edit to operate at scale,an efficient transformable HI line is needed,but most maize varieties are recalcitrant to transformation,and haploid inducers are especially difficult to transform given their aberrant reproductive behaviors.Leveraging marker assisted selection and a three-tiered testing scheme,we report the development of new Iodent and Stiff Stalk maize germplasm that are transformable,have high haploid induction rates,and exhibit a robust,genetically-dominant anthocyanin native trait that may be used for rapid haploid identification.We show that transformation of these elite‘‘HI-Edit”lines is enhanced using the BABYBOOM and WUSCHEL morphogenetic factors.Finally,we evaluate the HI-Edit performance of one of the lines against both Stiff Stalk and non-Stiff Stalk testers.The strategy and results of this study should facilitate the development of commercially scalable HI-Edit systems in diverse crops. 展开更多
关键词 Zea mays L Doubled haploids TRANSFORMATION Genome editing QTL
下载PDF
Supervised Feature Learning for Offline Writer Identification Using VLAD and Double Power Normalization
2
作者 dawei liang Meng Wu Yan Hu 《Computers, Materials & Continua》 SCIE EI 2023年第7期279-293,共15页
As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quick... As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness. 展开更多
关键词 Writer identification power normalization vector of locally aggregated descriptors feature extraction
下载PDF
Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell 被引量:2
3
作者 dawei liang Yanyan LIU +3 位作者 Sikan PENG Fei LAN Shanfu LU Yan XIANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第4期624-630,共7页
A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated.... A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H2-full atmosphere to enrich Ha-utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L-1 to 0.5 mol· L-1 and/or by decreasing the cathode potential from -0.9 V to - 1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H+ can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m3. m 3. d1 with a current density of 951.6 A. m-3 was obtained using the biocathode MEC under a cathode potential of - 1.3 V vs. SCE and 0.4 mol· L-1 bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof. 展开更多
关键词 microbial electrolysis cell (MEC) BIOCATHODE hydrogen production BICARBONATE cathode potential
原文传递
Transparent exopolymer particles(TEPs)-associated protobiofilm:A neglected contributor to biofouling during membrane filtration
4
作者 Shujuan Meng Rui Wang +6 位作者 Kaijing Zhang Xianghao Meng Wenchao Xue Hongju Liu dawei liang Qian Zhao Yu Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期205-214,共10页
Transparent exopolymer particles(TEPs)are a class of transparent gel-like polysaccharides,which have been widely detected in almost every kind of feed water to membrane systems,including freshwater,seawater and wastew... Transparent exopolymer particles(TEPs)are a class of transparent gel-like polysaccharides,which have been widely detected in almost every kind of feed water to membrane systems,including freshwater,seawater and wastewater.Although TEP have been thought to be related to the membrane fouling,little information is currently available for their influential mechanisms and the pertinence to biofouling development.The present study,thus,aims to explore the impact of TEPs on biofouling development during ultrafiltration.TEP samples were inoculated with bacteria for several hours before filtration and the formation of“protobiofilm”(pre-colonized TEP by bacteria)was examined and its influence on biofouling was determined.It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms.Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface,leading to rapid development of biofouling on the ultrafiltration membrane surfaces.Moreover,compared to the feed water containing independent bacteria and TEPs,more flux decline was observed with TEP-protobiofilms.Consequently,it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling,but unfortunately,this phenomenon has been often overlooked in the literature.Obviously,these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both.It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy. 展开更多
关键词 Transparent exopolymer particles(TEPs) TEP-protobiofilm Bacteria attachment Biofouling of membrane
原文传递
Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs
5
作者 dawei liang Shanquan Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期9-18,共10页
The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensi... The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70μmol· L^-1) and lactate (10 mmol· L^-1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta- (22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 × 10^5±0.5× 10^5 to 4.99 ×10^7±0.32 ×10^7 copies mL^-1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is priorto be applied for in situ biorernediation of notorious halogenated compounds. 展开更多
关键词 Polychlorinated biphenyls (PCBs) Microbial reductive dechlorination Dehalococcoides Pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部