期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The IDD Transcription Factors:Their Functions in Plant Development and Environmental Response
1
作者 Jing Liu Defeng Shu +5 位作者 Zilong Tan Mei Ma Huanhuan Yang Ning Guo Shipeng Li dayong cui 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期63-79,共17页
INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversi... INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture. 展开更多
关键词 INDETERMINATE DOMAIN flowering time root development shoot gravitropism plant immunity hormonal signaling environmental responses
下载PDF
Two Arabidopsis Receptor-like Cytoplasmic Kinases SZE1 and SZE2 Associate with the ZAR1-ZED1 Complex and Are Required for Effector-Triggered Immunity 被引量:2
2
作者 Cheng Liu dayong cui +8 位作者 Jingbo Zhao Na Liu Bo Wang Jing Liu Enjun Xu Zhubing Hu Dongtao Ren Dingzhong Tang Yuxin Hu 《Molecular Plant》 SCIE CAS CSCD 2019年第7期967-983,共17页
Plants utilize intracellular nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs) to recognize pathogen effectors and induce a robust defense response named effector-triggered immunity (ETI). The ... Plants utilize intracellular nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs) to recognize pathogen effectors and induce a robust defense response named effector-triggered immunity (ETI). The Arabidopsis NLR protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) forms a precomplex with HOPZ-ETI-DEFICIENT 1 (ZED1),a receptor-like cytoplasmic kinase (RLCK) XII-2 subfamily member, to recognize the Pseudomonas syringae effector HopZ1 a. We previously described a dominant mutant of Arabi-dopsis ZED1, zed1-D, which displays temperature-sensitive autoimmunity in a ZAR1-dependent manner. Here, we report that the RLCKs SUPPRESSOR OF ZED1-D1 (SZE1) and SZE2 associate with the ZAR1-ZED1 complex and are required for the ZED7-D-activated autoimmune response and HopZ1a-triggered immunity. We show that SZE1 but not SZE2 has autophosphorylation activity, and that the N-terminal myristoylation of both SZE1 and SZE2 is critical for their plasma membrane localization and ZED1-D-activated autoimmunity. Furthermore, we demonstrate that SZE1 and SZE2 both interact with ZAR1 to form ja functional complex and are required for resistance against P. syringae pv. tomato DC3000 ex-pressing HopZIa. We also provide evidence that SZE1 and SZE2 interact with HopZ1a and function together with ZED1 to change the intramolecular interactions of ZAR1, leading to its activation. Taken together, our re-sults reveal SZE1 and SZE2 as critical signaling components of HopZ1a-triggered immunity. 展开更多
关键词 ARABIDOPSIS RLCK SZE-ZAR1-ZED1 COMPLEX HopZIa immune response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部