Mathematical models for pulsed fluidization are systematically discussed. Several undetermined constitutive relationships are included in the General Two-Fluid Model (GTFM), the adjustable parameters of which are alwa...Mathematical models for pulsed fluidization are systematically discussed. Several undetermined constitutive relationships are included in the General Two-Fluid Model (GTFM), the adjustable parameters of which are always chosen at will to some extent. Although there are no adjustable parameters in the Basic Two-Fluid Model (BTFM), its eigenvalues are complex numbers and it is ill-posed for initial-value problems. The Local Equilibrium Model (LEM), a further simplification of BTFM, is discussed at length. Although the model is very simple, it is highly capable of simulating complex processes in pulsed fluidization over a broad range of operating parameters, and its numerical results well fit experimental results in both the variation of bed height and the distribution of particle concentration as fluidizing velocity varies.展开更多
基金granted by Key Laboratory of Multiphase Reaction,Institute of Process Engineering,Chinese Academy of Sciences and the National Natural Science Foundation of China(NSFC No.10072069)
文摘Mathematical models for pulsed fluidization are systematically discussed. Several undetermined constitutive relationships are included in the General Two-Fluid Model (GTFM), the adjustable parameters of which are always chosen at will to some extent. Although there are no adjustable parameters in the Basic Two-Fluid Model (BTFM), its eigenvalues are complex numbers and it is ill-posed for initial-value problems. The Local Equilibrium Model (LEM), a further simplification of BTFM, is discussed at length. Although the model is very simple, it is highly capable of simulating complex processes in pulsed fluidization over a broad range of operating parameters, and its numerical results well fit experimental results in both the variation of bed height and the distribution of particle concentration as fluidizing velocity varies.