The multidirectional forging (MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg-13Gd-4Y-2Zn-0.6Zr alloy containing long-period stacking ordered phase. The ...The multidirectional forging (MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg-13Gd-4Y-2Zn-0.6Zr alloy containing long-period stacking ordered phase. The effects of MDF passes on microstructure evolution and mechanical properties were also investigated. The results show that both the volume fraction of dynamic recrystallization (DRX) grains and mechanical properties of the deformed alloy enhanced with MDF passes increasing till seven passes. The average grain size decreased from 76 to 2.24 μm after seven passes, while the average grain size increased to 7.12 μm after nine passes. The microstructure after seven passes demonstrated randomly oriented fine DRX grains and larger basal (0001)〈1120〉 Schmid factor of 0.31. The superior mechanical properties at room temperature (RT) with ultimate tensile strength (UTS) of 416 MPa and fracture elongation of 4.12% can be obtained after seven passes. The mechanical properties at RT after nine passes are inferior to those after seven passes due to the coarsening of DRX grains, which can be ascribed to the static recovery resulting from the repeated heating at the interval of MDF passes. The elevated temperature mechanical properties of the deformed alloy after seven passes and nine passes were investigated. When test temperature was below 523 K, the elevated temperature tensile yield strength and UTS after seven passes are superior to those after nine passes, while they are inferior to that after nine passes as temperature exceeds 523 K.展开更多
基金sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The multidirectional forging (MDF) process was conducted at temperature of 753 K to optimize the mechanical properties of as-homogenized Mg-13Gd-4Y-2Zn-0.6Zr alloy containing long-period stacking ordered phase. The effects of MDF passes on microstructure evolution and mechanical properties were also investigated. The results show that both the volume fraction of dynamic recrystallization (DRX) grains and mechanical properties of the deformed alloy enhanced with MDF passes increasing till seven passes. The average grain size decreased from 76 to 2.24 μm after seven passes, while the average grain size increased to 7.12 μm after nine passes. The microstructure after seven passes demonstrated randomly oriented fine DRX grains and larger basal (0001)〈1120〉 Schmid factor of 0.31. The superior mechanical properties at room temperature (RT) with ultimate tensile strength (UTS) of 416 MPa and fracture elongation of 4.12% can be obtained after seven passes. The mechanical properties at RT after nine passes are inferior to those after seven passes due to the coarsening of DRX grains, which can be ascribed to the static recovery resulting from the repeated heating at the interval of MDF passes. The elevated temperature mechanical properties of the deformed alloy after seven passes and nine passes were investigated. When test temperature was below 523 K, the elevated temperature tensile yield strength and UTS after seven passes are superior to those after nine passes, while they are inferior to that after nine passes as temperature exceeds 523 K.