Undoped and praseodymium-doped zinc oxide (Pr-doped ZnO) (with 2.0-mol%-6.0-mol% Pr) nanoparticles as sunlight-driven photocatalysts are synthesized by means of co-precipitation with nitrates followed by thermal a...Undoped and praseodymium-doped zinc oxide (Pr-doped ZnO) (with 2.0-mol%-6.0-mol% Pr) nanoparticles as sunlight-driven photocatalysts are synthesized by means of co-precipitation with nitrates followed by thermal annealing. The structure, morphology, and chemical bonding of the photocatalysts are studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive x-ray emission spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR), respectively. The optical properties are studied by photolu- minescence (PL) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). We find that Pr doping does not change the crystallinity of ZnO; but it reduces the bandgap slightly, and restrains the recombination of the photogenerated electron-hole pairs. The photocatalytic performance of the photocatalysts is investigated by the photodegradation reaction of 10-mg/L rhodamine B (RhB) solution under simulated sunlight irradiation, showing a degradation rate of 93.75% in ZnO doped with 6.0-mo1% Pr.展开更多
We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball ...We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.展开更多
TiBCN films were deposited on Si(100) and cemented carbide substrates by using multi-cathodic arc ion plating in C_2H_2 and N_2atmosp^here. Their structure and mechanical properties were studied systematically under d...TiBCN films were deposited on Si(100) and cemented carbide substrates by using multi-cathodic arc ion plating in C_2H_2 and N_2atmosp^here. Their structure and mechanical properties were studied systematically under different N_2 flow rates. The results showed that the Ti BCN films were adhered well to the substrates. Rutherford backscattering sp^ectroscopy was employed to determine the relative concentration of Ti, B, C and N in the films.The chemical bonding states of the films were explored by X-ray photoelectron sp^ectroscopy, revealing the presence of bonds of Ti N, Ti(C,N), BN, pure B, sp^2C–C and sp^3C–C, which changed with the N_2 flow rate. Ti BCN films contain nanocrystals of Ti N/Ti CN and Ti B_2/Ti(B,C)embedded in an amorphous matrix consisting of amorphous BN and carbon at N_2 flow rate of up to 250 sccm.展开更多
The ion implantation uniformity is of vital importance for an ion implanter.In this paper,we report the,uniformity measurement for a large current ion implanter(LC-16 type) by implanting of 190-keV Ar ions into Si to ...The ion implantation uniformity is of vital importance for an ion implanter.In this paper,we report the,uniformity measurement for a large current ion implanter(LC-16 type) by implanting of 190-keV Ar ions into Si to 3×1016 atoms/cm2,followed by Rutherford backscattering spectroscopy(RBS) and sheet resistance measurement providing quantitative information on spatial distribution of dopants.The implant doses obtained from RBS at selected points of the sample give a spatial uniformity of <5%,which are confirmed by the sheet resistance measurement.While sheet resistance is an indirect method for dose evaluation of ion-implanted samples,RBS provides a competent technique for calibration of the ion implantation system.And both measurements show that good uniformity can be achieved for the ion implanter by tuning of the scanning process.展开更多
BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and fina...BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and final annealing schemes.X-ray diffraction and scanning electron microscopy are employed to probe the phase structures and surface morphologies.Using Rutherford backscattering spectrometry to quantify the nonstoichiometries of BiFeO3 thin films annealed at 100?C–650?C.The results indicate that Bi and Fe cations are close to the stoichiometry of BiFeO3,whereas the deficiency of O anions possibly plays a key role in contributing to the leakage current of 10^-5 A/cm^2 in a wide range of applied voltage rather than the ferroelectric polarizations of BiFeO3 thin films annealed at high temperature.展开更多
基金Project supported by the International Cooperation Program of the Ministry of Science and Technology of China(Grant No.2015DFR00720)the Cooperation Program of Wuhan Science and Technology Bureau,China(Grant No.2016030409020219)the Shenzhen Committee on Science and Technology Innovation,China(Grant No.JCYJ20170818112901473)
文摘Undoped and praseodymium-doped zinc oxide (Pr-doped ZnO) (with 2.0-mol%-6.0-mol% Pr) nanoparticles as sunlight-driven photocatalysts are synthesized by means of co-precipitation with nitrates followed by thermal annealing. The structure, morphology, and chemical bonding of the photocatalysts are studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive x-ray emission spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR), respectively. The optical properties are studied by photolu- minescence (PL) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). We find that Pr doping does not change the crystallinity of ZnO; but it reduces the bandgap slightly, and restrains the recombination of the photogenerated electron-hole pairs. The photocatalytic performance of the photocatalysts is investigated by the photodegradation reaction of 10-mg/L rhodamine B (RhB) solution under simulated sunlight irradiation, showing a degradation rate of 93.75% in ZnO doped with 6.0-mo1% Pr.
基金Project supported by the National Natural Science Foundation of China(Grant No.11875210)China Postdoctoral Science Foundation(Grant No.2018M640724)+1 种基金the International Cooperation Program of Guangdong Provincial Science and Technology Plan Project(Grant No.2018A050506082)the Talent Project of Lingnan Normal University,China(Grant No.ZL1931)
文摘We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.
基金supported by the National Natural Science Foundation of China(Nos.11375135 and 11275141)International Cooperation Program of the Ministry of Science and Technology of China(No.2015DFR00720)Fundamental Research Funds for the Central Universities
文摘TiBCN films were deposited on Si(100) and cemented carbide substrates by using multi-cathodic arc ion plating in C_2H_2 and N_2atmosp^here. Their structure and mechanical properties were studied systematically under different N_2 flow rates. The results showed that the Ti BCN films were adhered well to the substrates. Rutherford backscattering sp^ectroscopy was employed to determine the relative concentration of Ti, B, C and N in the films.The chemical bonding states of the films were explored by X-ray photoelectron sp^ectroscopy, revealing the presence of bonds of Ti N, Ti(C,N), BN, pure B, sp^2C–C and sp^3C–C, which changed with the N_2 flow rate. Ti BCN films contain nanocrystals of Ti N/Ti CN and Ti B_2/Ti(B,C)embedded in an amorphous matrix consisting of amorphous BN and carbon at N_2 flow rate of up to 250 sccm.
基金supported by the National Natural Science Foundation of China(Nos.11405117 and 11205116)International Cooperation Program of the Ministry of Science and Technology of China(No.2015DFR00720)
文摘The ion implantation uniformity is of vital importance for an ion implanter.In this paper,we report the,uniformity measurement for a large current ion implanter(LC-16 type) by implanting of 190-keV Ar ions into Si to 3×1016 atoms/cm2,followed by Rutherford backscattering spectroscopy(RBS) and sheet resistance measurement providing quantitative information on spatial distribution of dopants.The implant doses obtained from RBS at selected points of the sample give a spatial uniformity of <5%,which are confirmed by the sheet resistance measurement.While sheet resistance is an indirect method for dose evaluation of ion-implanted samples,RBS provides a competent technique for calibration of the ion implantation system.And both measurements show that good uniformity can be achieved for the ion implanter by tuning of the scanning process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11605103,11405117,and 11747074)the Guangdong Provincial Natural Science Foundation,China(Grant Nos.2014A030307008 and 2016A030313670)the Guangdong Provincial Science and Technology Planning Project,China(Grant Nos.2016A010103041 and 2017A010103025)
文摘BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and final annealing schemes.X-ray diffraction and scanning electron microscopy are employed to probe the phase structures and surface morphologies.Using Rutherford backscattering spectrometry to quantify the nonstoichiometries of BiFeO3 thin films annealed at 100?C–650?C.The results indicate that Bi and Fe cations are close to the stoichiometry of BiFeO3,whereas the deficiency of O anions possibly plays a key role in contributing to the leakage current of 10^-5 A/cm^2 in a wide range of applied voltage rather than the ferroelectric polarizations of BiFeO3 thin films annealed at high temperature.