In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar rin...In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate)(PBC). The results indicate that the introduction of butylene adipate(BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51503217)Zhejiang Province Public Welfare Project(No.2017C31081)+1 种基金the Open Project Program of MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University(No.2016MSF001)Youth Innovation Promotion Association CAS(No.2017339)
文摘In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate)(PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate)(PBC). The results indicate that the introduction of butylene adipate(BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.