The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction te...The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.展开更多
Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentr...Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentrations in the feed were comprehensively investigated.The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate([A336][Cyanex272])could selectively extract W over Mo at an initial pH value of 5.5;the best separation factorβ_(W/Mo) of 25.61 was obtained for a solution with low metal concentrations(WO3:2.49 g/L,Mo:1.04 g/L).The[A336][Cyanex272]system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed.The chemical reaction between[A336][Cyanex272]and W followed the ion association mechanism,which was further proved by the Fourier-transform infrared(FTIR)spectra of loaded[A336][Cyanex272]and the free extractant.The stripping experiments indicated that 95.48%W and 100.00%Mo were stripped using a 0.20 mol/L sodium hydroxide solution.Finally,the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained;the separation factorβW/Mo reached 23.24 and 17.59 for the first and second solutions,respectively.The results suggest the feasibility of[A336][Cyanex272]as an extractant for the separation of tungsten and molybdenum.展开更多
A new adsorbent, ammonium sulfamate-bacterial cellulose (ASBC), was prepared through chemical modifications of bacterial cellulose. The process of adsorbing Cr(VI) including its isotherm and kinetics, was measured...A new adsorbent, ammonium sulfamate-bacterial cellulose (ASBC), was prepared through chemical modifications of bacterial cellulose. The process of adsorbing Cr(VI) including its isotherm and kinetics, was measured and studied. The results showed that pH value was a very important parameter to the adsorbing efficiency. The adsorption kinetics can be described by a pseudo-second rate model and a particle diffusion equation. Both physical and chemical adsorptions existed in the adsorption process, but chemical adsorption was more dominatant. And particles internal diffusion was not the only rate controlling step. The adsorption equilibrium can be described by the Langmuir type, which indicated that a typical single-molecule layer adsorption of Cr(VI) by ASBC could be described. And the rate of adsorption followed the Slips model well, which indicated that ASBC had some multiphase and asymmetry. The coordination adsorption and ion exchange effect were the main mechanisms of chemical adsorption. The absorbed Cr(V1) can be desorbed effectively by 0.5 mol/L EDTA or HCI from the adsorbent, which could make it be reusable展开更多
基金Projects(51674067,51422402) supported by the National Natural Science Foundation of ChinaProjects(N150101001,N160106004,N170106005) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.
基金financially supported by the National Natural Science Foundation of China(No.51504225).
文摘Functionalized ionic liquids(FILs)as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time.The effects of initial pH,extractant concentration,metal concentrations in the feed were comprehensively investigated.The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate([A336][Cyanex272])could selectively extract W over Mo at an initial pH value of 5.5;the best separation factorβ_(W/Mo) of 25.61 was obtained for a solution with low metal concentrations(WO3:2.49 g/L,Mo:1.04 g/L).The[A336][Cyanex272]system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed.The chemical reaction between[A336][Cyanex272]and W followed the ion association mechanism,which was further proved by the Fourier-transform infrared(FTIR)spectra of loaded[A336][Cyanex272]and the free extractant.The stripping experiments indicated that 95.48%W and 100.00%Mo were stripped using a 0.20 mol/L sodium hydroxide solution.Finally,the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained;the separation factorβW/Mo reached 23.24 and 17.59 for the first and second solutions,respectively.The results suggest the feasibility of[A336][Cyanex272]as an extractant for the separation of tungsten and molybdenum.
基金supported by the Natural Science Foundation of Jilin Province(No.20101553)"Eleventh Five-Year"Science and Technology Research Projects of the Education Department of Jilin Province(No.2010-71)+1 种基金Doctor Science Research Starting Projects of Northeast Dianli University(No.BSJXM-2012)Science and Technology Research Projects of Jilin City(No.201162504)
文摘A new adsorbent, ammonium sulfamate-bacterial cellulose (ASBC), was prepared through chemical modifications of bacterial cellulose. The process of adsorbing Cr(VI) including its isotherm and kinetics, was measured and studied. The results showed that pH value was a very important parameter to the adsorbing efficiency. The adsorption kinetics can be described by a pseudo-second rate model and a particle diffusion equation. Both physical and chemical adsorptions existed in the adsorption process, but chemical adsorption was more dominatant. And particles internal diffusion was not the only rate controlling step. The adsorption equilibrium can be described by the Langmuir type, which indicated that a typical single-molecule layer adsorption of Cr(VI) by ASBC could be described. And the rate of adsorption followed the Slips model well, which indicated that ASBC had some multiphase and asymmetry. The coordination adsorption and ion exchange effect were the main mechanisms of chemical adsorption. The absorbed Cr(V1) can be desorbed effectively by 0.5 mol/L EDTA or HCI from the adsorbent, which could make it be reusable