Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree...Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree diversity in severely damaged forest areas? Do hurricanes(tropical cyclones that occurs in the Atlantic Ocean and northeastern Pacific Ocean) lead to altered relative abundance of shade-tolerant and shade-intolerant species? Did historic hurricanes alter the succession trajectory of the damaged forests? We used nearly 70-year tree demographic data to assess the effects of two major hurricanes on woody species diversity in Piedmont forests, North Carolina, USA. Species richness(S) and Shannon–Wiener's diversity index(H') were used to evaluate the changes in tree diversity. The changes in composition were assessed with Nonmetric Multidimensional Scaling. The pre-hurricane successional phase can strongly influence both the damage severity and subsequent responses. Although there is often an immediate drop in diversity following a hurricane, understory tree diversity quickly increases to levels that exceed those prior to the disturbance. This leads to an increase in diversity in stands that were substantially damaged. Hurricanes significantly decrease the dominance of shade-intolerant canopy species while increasing preestablished, more shade-tolerant species. We conclude that large, and infrequent hurricanes help to maintain local tree diversity, but also accelerate the increase in dominance of understory species such as red maple and beech.展开更多
Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree ...Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree census plots in the Duke Forest on the North Carolina Piedmont,thereby providing an exceptional opportunity to examine pre-and post-hurricane forest compositional trajectories.Our goal was to examine immediate,short-term(0–4 years)and longer term(;5 year)hurricane-induced structural,spatial and compositional changes in the tree population(stem d.b.h>1 cm)in the context of our detailed,long-term knowledge of the dynamics of these forests.Methods We surveyed stem damage and tree mortality in 34 long-term permanent plots(ca.70-year record;404–1012 m^(2))and 7 large mapped tree stands(ca.20-year record;5250–65000 m^(2))representing both transition-phase,even-aged pine stands and uneven-aged upland hardwood forests.We employed three types of damage measures to quantify stand-level damage severity:percentage of stems damaged,percentage of basal area lost and a‘stand-level damage index’.Second-order spatial analysis(Ripley’s K-function)was used to investigate patterns in tree mortality.Important findings Our study found hurricane effects on the structural attributes of Piedmont forests to be variable and patchy.Changes in tree species composition,however,were modest.Uprooting was the major damage type for the overstory trees[diameter at breast height(d.b.h.)>10 cm]apparently due to the exposure of the crowns to high wind combined with heavy rainfall prior to and during the storm.Saplings,juvenile trees and small trees(1–10 cm d.b.h.)of the understory and midstory were mainly damaged by being pinned or bent by their damaged large neighbors.Hurricane-induced tree mortality varied weakly among species,was positively correlated with pre-hurricane tree size and remained up to 2-fold higher than pre-hurricane background mortality 5 years after the hurricane.Spatial point pattern analysis revealed a patchy distribution of tree mortality during the hurricane sampling interval.Hurricane Fran resulted in a dramatic increase in average gap size from ca.400 m^(2) pre-hurricane to ca 1100 m^(2) after the hurricane,whereas maximum gap sizes reached 18–34 times larger than the pre-hurricane levels.展开更多
基金supported by a grant from the National Science Foundation(DEB-97-07551)
文摘Windthrow plays a critical role in maintaining species diversity in temperate forests. Do large-scale strong wind events(i.e., tropical cyclones, including hurricanes,typhoons and severe cyclonic storms) increase tree diversity in severely damaged forest areas? Do hurricanes(tropical cyclones that occurs in the Atlantic Ocean and northeastern Pacific Ocean) lead to altered relative abundance of shade-tolerant and shade-intolerant species? Did historic hurricanes alter the succession trajectory of the damaged forests? We used nearly 70-year tree demographic data to assess the effects of two major hurricanes on woody species diversity in Piedmont forests, North Carolina, USA. Species richness(S) and Shannon–Wiener's diversity index(H') were used to evaluate the changes in tree diversity. The changes in composition were assessed with Nonmetric Multidimensional Scaling. The pre-hurricane successional phase can strongly influence both the damage severity and subsequent responses. Although there is often an immediate drop in diversity following a hurricane, understory tree diversity quickly increases to levels that exceed those prior to the disturbance. This leads to an increase in diversity in stands that were substantially damaged. Hurricanes significantly decrease the dominance of shade-intolerant canopy species while increasing preestablished, more shade-tolerant species. We conclude that large, and infrequent hurricanes help to maintain local tree diversity, but also accelerate the increase in dominance of understory species such as red maple and beech.
基金supported by W.C.Coker and A.H.Beers fellowships and a Dissertation Completion Fellowship from the University of North Carolina at Chapel Hill to W.X.and a grant from the National Science Foundation(DEB-97-07551)to R.K.P.and D.L.U.
文摘Aims Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarely been examined in detail.In 1996,Hurricane Fran significantly damaged many long-term tree census plots in the Duke Forest on the North Carolina Piedmont,thereby providing an exceptional opportunity to examine pre-and post-hurricane forest compositional trajectories.Our goal was to examine immediate,short-term(0–4 years)and longer term(;5 year)hurricane-induced structural,spatial and compositional changes in the tree population(stem d.b.h>1 cm)in the context of our detailed,long-term knowledge of the dynamics of these forests.Methods We surveyed stem damage and tree mortality in 34 long-term permanent plots(ca.70-year record;404–1012 m^(2))and 7 large mapped tree stands(ca.20-year record;5250–65000 m^(2))representing both transition-phase,even-aged pine stands and uneven-aged upland hardwood forests.We employed three types of damage measures to quantify stand-level damage severity:percentage of stems damaged,percentage of basal area lost and a‘stand-level damage index’.Second-order spatial analysis(Ripley’s K-function)was used to investigate patterns in tree mortality.Important findings Our study found hurricane effects on the structural attributes of Piedmont forests to be variable and patchy.Changes in tree species composition,however,were modest.Uprooting was the major damage type for the overstory trees[diameter at breast height(d.b.h.)>10 cm]apparently due to the exposure of the crowns to high wind combined with heavy rainfall prior to and during the storm.Saplings,juvenile trees and small trees(1–10 cm d.b.h.)of the understory and midstory were mainly damaged by being pinned or bent by their damaged large neighbors.Hurricane-induced tree mortality varied weakly among species,was positively correlated with pre-hurricane tree size and remained up to 2-fold higher than pre-hurricane background mortality 5 years after the hurricane.Spatial point pattern analysis revealed a patchy distribution of tree mortality during the hurricane sampling interval.Hurricane Fran resulted in a dramatic increase in average gap size from ca.400 m^(2) pre-hurricane to ca 1100 m^(2) after the hurricane,whereas maximum gap sizes reached 18–34 times larger than the pre-hurricane levels.