In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the ...In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the quark matter and two different effective models for the hadronic matter,we estimated the transport coefficients of the two phases separately.Accordingly,density profiles of the transport coefficients were depicted in two parts:the phasespace part and the relaxation time part.From calculating the shear viscosity to density ratio,we also explored the nearly perfect fluid domain of the quark and hadronic matter.展开更多
基金institute postdoctoral funding and research facilities at Indian Institute of Science Education and Research Berhampur,Odisha at the initial stage of this workfunding support of IFCPAR/CEFIPRA under Project(5804-3)。
文摘In this study,we calculated transport coefficients including the shear viscosity and electrical conductivity relative to the density of dense hadronic and quark matter.By considering the simple massless limit for the quark matter and two different effective models for the hadronic matter,we estimated the transport coefficients of the two phases separately.Accordingly,density profiles of the transport coefficients were depicted in two parts:the phasespace part and the relaxation time part.From calculating the shear viscosity to density ratio,we also explored the nearly perfect fluid domain of the quark and hadronic matter.