Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly ...Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.展开更多
基金supported in part by the National Natural Science Foundation of China(No.52007126 and No.U2166209).
文摘Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.