期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多酸在电催化析氢反应中的应用研究进展 被引量:6
1
作者 葛靖暄 胡钧 +6 位作者 朱盈婷 泽妮诗 臧德进 秦召贤 黄毅超 张江威 魏永革 《物理化学学报》 SCIE CAS CSCD 北大核心 2020年第1期83-102,共20页
电催化水裂解是一种可持续用于生产可再生氢能源的技术。然而,开发高效稳定、低成本的析氢电催化剂仍是一项具有挑战性的任务。多金属氧酸盐(多酸)是一种离散的金属氧簇合物,通常由氧配体和高价的钒(V)、钼(VI)、钨(VI)金属构成。由于... 电催化水裂解是一种可持续用于生产可再生氢能源的技术。然而,开发高效稳定、低成本的析氢电催化剂仍是一项具有挑战性的任务。多金属氧酸盐(多酸)是一种离散的金属氧簇合物,通常由氧配体和高价的钒(V)、钼(VI)、钨(VI)金属构成。由于多酸含有丰富的氧化还原活性金属中心,因此,近几年来,多酸在水裂解应用研究方面备受关注。本综述将聚焦于多酸在电催化水裂解析氢的应用研究进展。本文还突出强调了电催化析氢目前面临的主要问题,以及对多酸基催化剂及作为催化剂前体在电催化析氢方面的应用及发展前景做了展望。 展开更多
关键词 多酸 氧化还原活性位点 电催化 水裂解 析氢反应
下载PDF
Polyoxometalates based compounds for green synthesis of aldehydes and ketones
2
作者 Kejie Qin dejin zang Yongge Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期90-101,共12页
Molecular oxygen within Polyoxometalates(POMs)based compounds are ideal oxidants with high atom economy and its use results in the production of water as the only byproduct.Significant progress has been made in the de... Molecular oxygen within Polyoxometalates(POMs)based compounds are ideal oxidants with high atom economy and its use results in the production of water as the only byproduct.Significant progress has been made in the development of catalytic methods for aerobic alcohol oxidation to have aldehydes and ketones with POMs based compounds.They are alternative to the use of traditional hypervalent iodine catalyst systems which are with molecular oxygen as a terminal oxidant.Further,POMs based catalysts can be applied to catalytic reactions with different modes of energization such as thermocatalysis,photocatalysis and electrocatalysis.This review summarizes the frontier advances in polyoxometalates for catalytic alcohol selective oxidation in thermocatalytic,electrocatalytic,and photocatalytic applications.The three advantages of POM catalysts in terms of performance,economy,and environmental protection are highlighted.These include the use of sol-gel and electrostatic assembly methods to increase the reaction surface area,reduce the use of precious metals,and improve the stability of POMs catalysts.The field of selective alcohol oxidation is advanced.Finally,the challenges of preparing more efficient and“green”catalysts are presented. 展开更多
关键词 POLYOXOMETALATES Alcohol oxidation Thermocatalysis PHOTOCATALYSIS ELECTROCATALYSIS ALDEHYDES KETONES
原文传递
Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO_(2) reduction with enhanced selectivity towards ethanol 被引量:3
3
作者 dejin zang Xuejiao JGao +2 位作者 Leyun Li Yongge Wei Haiqing Wang 《Nano Research》 SCIE EI CSCD 2022年第10期8872-8879,共8页
Electroreduction of greenhouse gas CO_(2) into value-added fuels and chemicals provides a promising pathway to address the issues of energy crisis and environmental change.However,the regulations of the selectivity to... Electroreduction of greenhouse gas CO_(2) into value-added fuels and chemicals provides a promising pathway to address the issues of energy crisis and environmental change.However,the regulations of the selectivity towards C2 product and the competing hydrogen evolution reaction(HER)are major challenges for CO_(2) reduction reaction(CO_(2)RR).Here,we develop an interface-enhanced strategy by depositing a thin layer of nitrogen-doped graphene(N-G)on a Cu foam surface(Cu-N-G)to selectively promote the ethanol pathway in CO_(2)RR.Compared to the undetectable ethanol selectivity of pure Cu and Cu@graphene(Cu-G),Cu-N-G has boosted the ethanol selectivity to 33.1%in total Faradic efficiency(FE)at−0.8 V vs.reversible hydrogen electrode(RHE).The experimental and density functional theory(DFT)results verify that the interconnected graphene coating can not only serve as the fast charge transport channel but also provide confined nanospace for mass transfer.The N doping can not only trigger the intrinsic interaction between N in N-G and CO_(2) molecule for enriching the local concentration of reactants but also promote the average valence state of Cu for C–C coupling pathways.The confinement effect at the interface of Cu-N-G can not only provide high adsorbed hydrogen(Had)coverage but also stabilize the key*HCCHOH intermediate towards ethanol pathway.The provided interface-enhanced strategy herein is expected to inspire the design of Cubased CO_(2)RR electrocatalysts towards multi-carbon products. 展开更多
关键词 CO_(2)reduction Cu-based catalyst Cu/N-doped carbon interface engineering C2 production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部