期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Immobilization of Cu2+and Cd2+by earthworm manure derived biochar in acidic circumstance 被引量:8
1
作者 Zhanghong Wang Fei shen +2 位作者 dekui shen Yahui Jiang Rui Xiao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第3期293-300,共8页
Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or ... Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700℃ and biochar treated by HCI (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCI treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C=O, aromatic C=C and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC (8.64 and 12.81 rag/g, respectively), indicating that HCI treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C=O and aromatic C=C). 展开更多
关键词 Biochar Earthworm manure AdsorptionHC1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部