期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pyroclasts of the First Phases of the Explosive-Effusive PCCVC Volcanic Eruption: Physicochemical Analysis 被引量:1
1
作者 Lia Botto Vicente Barone +5 位作者 María E. Canafoglia Elizabeth Rovere Roberto Violante María J. González delia gazzoli Isidoro Schalamuk 《Advances in Materials Physics and Chemistry》 2015年第8期302-315,共14页
The morphology, texture, grain size and other physicochemical characteristics of pyroclastic material from the first phases of the Puyehue-Cordon Caulle volcanic complex (PCCVC) eruption, (Southern Andes, Chile), can ... The morphology, texture, grain size and other physicochemical characteristics of pyroclastic material from the first phases of the Puyehue-Cordon Caulle volcanic complex (PCCVC) eruption, (Southern Andes, Chile), can be associated to the model recently reported for the magma storage and its ascent conditions. The eruption started June 4th 2011, and the studied volcanic material corresponds to that collected in Argentine territory at different distances from the source, between 4 and 12 June 2011. The explosive-effusive volcanic process of the first days occurred with the simultaneous emplacement of lava flows and the venting of pyroclastic material, ejecting two well differentiated types of particles. The more abundant was constituted by rhyolitic and light color pumice fragments, characterized by a typical vesicular texture, easy fragmentation and absence of occluded crystalline phases. Particles found in minor proportion were dark color, different in shape and texture and rich in Fe and Ti. They seemed to be more effective for the interaction with emitted gases in the upper part of the column, for this reason, they appeared partially covered by condensation products. The ascent conditions of the magma affected its rheological behavior through variations in the degassing, viscosity and fragmentation. On the other hand, distance to the source, depositional time, volcanic evolution and environmental conditions are factors that affect the chemical composition of collected ash. So, the SiO2/FeO ratio not only increases with the distance but also with the deposition time and volcanic activity. The work was done with the aid of several techniques such as a laser-sediment analyzer, X-ray diffraction (XRD), chemical analysis (bulk and surface), SEM microscopy and Raman “microprobe” spectroscopy. On the other hand, the physicochemical behavior of the pyroclastic material allows us to suggest eventual applications. 展开更多
关键词 PYROCLASTIC Materials Chemical Composition MINERALOGY Sem Microscopy RAMAN Spectroscopy
下载PDF
Correlation between Iron Reducibility in Natural and Iron-Modified Clays and Its Adsorptive Capability for Arsenic Removal
2
作者 Irma Lia Botto Simonetta Tuti +1 位作者 María Jose Gonzalez delia gazzoli 《Advances in Materials Physics and Chemistry》 2016年第5期129-139,共11页
The study reports aspects that allowed to correlate structural and redox properties of iron species deposited on clay minerals with the capacity of geomaterials for arsenic removal. Natural ferruginous clays as well a... The study reports aspects that allowed to correlate structural and redox properties of iron species deposited on clay minerals with the capacity of geomaterials for arsenic removal. Natural ferruginous clays as well as an iron-poor clay chemically modified with Fe(III) salt (ferrihydrite species) were investigated as adsorbents of the arsenate(V) in water. The study, carried out from minerals from abundant Argentinean deposits, was conducted with the aid of different techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDS), Raman Spectroscopy, ICP-AES (Inductively Coupled Plasma) chemical analysis and Temperature Programmed Reduction (TPR). This last technique allowed to detect availability of iron species in oxidic environment with different structural complexity and to determine active sites, accessible for arsenate(V) adsorption. The effect was observed through temperature dependence of the first Fe(III) reduction step (below 570&deg;C) of iron-oxide species. The sequence of reducibility: ferrihydrite > hydrous oxide (goethite) > anhydrous oxide (hematite) > structural iron in clay was in agreement with the availability of iron active sites for the reducing process as well as for the arsenate adsorption. The important role of very high iron content in original samples was also observed. The chemical activation of iron-poor clay by a simple and feasible modification with Fe(III) solutions promoted the deposition of the ferrihydrite active phase with an increase of 2.81% (expressed as Fe2O3) respect to the original content of 1.07%, constituting an accessible and eco-friendly technological alternative to solve the environmental problem of water containing arsenic. 展开更多
关键词 Temperature Programmed Reduction Iron-Oxide Species Arsenic Removal
下载PDF
Characterization and catalytic activity of soft-templated Ni0-CeO_(2) mixed oxides for CO and CO_(2) co-methanation
3
作者 Luciano Atzori Maria Giorgia Cutrufello +6 位作者 Daniela Meloni Barbara Onida delia gazzoli Andrea Ardu Roberto Monaci Maria Franca Sini Elisabetta Rombi 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2021年第2期251-268,共18页
Nanosized NiO,CeO_(2) and NiO-CeO_(2) mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical compositio... Nanosized NiO,CeO_(2) and NiO-CeO_(2) mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO_(2) nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO_(2) interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO_(2) is able to effectively adsorb CO_(2),forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO_(2) co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO_(2)/H_(2) molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm^(3)∙h^(-1)∙gcat^(-1).Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO_(2) conversion was strongly affected by both the CO/CO_(2)/H_(2) ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO_(2) methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the CO_(x) co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress. 展开更多
关键词 soft template method Ni0-CeO_(2)catalystss CO and CO_(2)co-mtharation synthetic natural gas production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部