SnS with high theoretical capacity is a promising anode material for lithiumion batteries.However,dramatic volume changes of SnS during repeated discharge/charge cycles result in fractures or even pulverization of ele...SnS with high theoretical capacity is a promising anode material for lithiumion batteries.However,dramatic volume changes of SnS during repeated discharge/charge cycles result in fractures or even pulverization of electrode,leading to rapid capacity degradation.To solve this problem,we construct a dual-carbon-confined SnS nanostructure(denoted as SnS@C/rGO)by depositing semi-graphitized carbon layers on reduced graphene oxide(rGO)supported SnS nanoplates during high-temperature reduction.The dual carbon of rGO and in situ formed carbon coating confines growth of SnS during the high-temperature calcination.Moreover,during the reversible Li+storage the dual-carbon modification enables good electronic conductivity,relieves the volume effect,and provides double insurance for the electrical contact of SnS even after repeated cycles.Benefiting from the dual-carbon confinement,SnS@C/rGO exhibits significantly enhanced rate capability and cycling stability compared with the bare and single carbon modified SnS.SnS@C/rGO presents reversible capacity of 1029.8 mAh g^(-1)at 0.2 A g^(-1).Even at a high current density of 1 A g^(-1),it initially delivers reversible capacity of 934.0 mAh g^(-1)and retains 98.2%of the capacity(918.0 mAh g^(-1))after 330 cycles.This work demonstrates potential application of dual-carbon modification in the development of electrode materials for high-performance lithium-ion batteries.展开更多
To develop anode materials with superior volumetric storage is crucial for practical application of lithium/sodium-ion batteries.Here,we have developed a micro/nanostructured Sn S/few-layer graphene(Sn S/FLG)composite...To develop anode materials with superior volumetric storage is crucial for practical application of lithium/sodium-ion batteries.Here,we have developed a micro/nanostructured Sn S/few-layer graphene(Sn S/FLG)composite by facile scalable plasma milling.Inside the hybrid,SnS nanoparticles are tightly supported by FLG,forming nanosized primary particles as building blocks and assembling to microsized secondary granules.With this unique micro/nanostructure,the Sn S/FLG composite possesses a high tap density of 1.98 g cm^(-3)and thus ensures a high volumetric storage.The combination of Sn S nanoparticles and FLG nanosheets can not only enhance the overall electrical conductivity and facilitate the ion diffusion greatly,but alleviate the large volume expansion of Sn S effectively and maintain the electrode integrity during cycling.Thus,the densely compacted Sn S/FLG composite exhibits superior volumetric lithium and sodium storage,including high volumetric capacities of 1926.5/1051.4 m Ah cm^(-3)at 0.2 A g^(-1),and high retained capacities of 1754.3/760.3 m Ah cm^(-3)after 500cycles at 1.0 A g^(-1).With superior volumetric storage performance and facile scalable synthesis,the Sn S/FLG composite can be a promising anode for practical batteries application.展开更多
Sn-based chalcogenides are considered as one of the most promising anode materials for lithium-ion batteries(LIBs)because of their high capacities through both conversion and alloying reactions.However,the realization...Sn-based chalcogenides are considered as one of the most promising anode materials for lithium-ion batteries(LIBs)because of their high capacities through both conversion and alloying reactions.However,the realization of full capacities of Sn-based chalcogenides is mainly hindered by the large volume variation and inferior reversibility of conversion reaction during cycling.In present work,a new ternary Sn SMo-graphene nanosheets(Sn S-Mo-GNs)composite is fabricated by a simple and scalable plasma milling method,in which Sn S nanoparticles are tightly bonded with Mo and GNs.The Mo and GNs additives can effectively alleviate the large volume change of Sn S upon cycling,which leads to a stable electrochemical framework.Moreover,they can significantly suppress the Sn agglomeration in lithiated Sn S,which enables highly reversible conversion reaction during cycling.As anode for LIBs,the Sn S-Mo-GNs composite exhibits a high initial coulombic efficiency of 86.9%(almost complete reversibility of Sn S,~97.3%),high cyclic coulombic efficiency after initial three cycles(>99.5%),and long lifespan(up to 600 cycles).Moreover,it also demonstrates superior electrochemical performance for sodium storage.Thus,this work demonstrates a potential anode for batteries application and provides a viable strategy to obtain highly reversible and stable anodes for lithium/sodium storage.展开更多
基金the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2017B030306004)Guangdong Special Support Program(2017TQ04N224)+2 种基金National Natural Science Foundation of China(Grant No.51671089)the support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(NSFC51621001)Guangdong Province Universities and Col eges Pearl River Scholar Funded Scheme
文摘SnS with high theoretical capacity is a promising anode material for lithiumion batteries.However,dramatic volume changes of SnS during repeated discharge/charge cycles result in fractures or even pulverization of electrode,leading to rapid capacity degradation.To solve this problem,we construct a dual-carbon-confined SnS nanostructure(denoted as SnS@C/rGO)by depositing semi-graphitized carbon layers on reduced graphene oxide(rGO)supported SnS nanoplates during high-temperature reduction.The dual carbon of rGO and in situ formed carbon coating confines growth of SnS during the high-temperature calcination.Moreover,during the reversible Li+storage the dual-carbon modification enables good electronic conductivity,relieves the volume effect,and provides double insurance for the electrical contact of SnS even after repeated cycles.Benefiting from the dual-carbon confinement,SnS@C/rGO exhibits significantly enhanced rate capability and cycling stability compared with the bare and single carbon modified SnS.SnS@C/rGO presents reversible capacity of 1029.8 mAh g^(-1)at 0.2 A g^(-1).Even at a high current density of 1 A g^(-1),it initially delivers reversible capacity of 934.0 mAh g^(-1)and retains 98.2%of the capacity(918.0 mAh g^(-1))after 330 cycles.This work demonstrates potential application of dual-carbon modification in the development of electrode materials for high-performance lithium-ion batteries.
基金the financial support from the Innovative Research Groups of the National Natural Science Foundation of China(No.51621001)National Natural Science Foundation of China(No.51671088,51671089)
文摘To develop anode materials with superior volumetric storage is crucial for practical application of lithium/sodium-ion batteries.Here,we have developed a micro/nanostructured Sn S/few-layer graphene(Sn S/FLG)composite by facile scalable plasma milling.Inside the hybrid,SnS nanoparticles are tightly supported by FLG,forming nanosized primary particles as building blocks and assembling to microsized secondary granules.With this unique micro/nanostructure,the Sn S/FLG composite possesses a high tap density of 1.98 g cm^(-3)and thus ensures a high volumetric storage.The combination of Sn S nanoparticles and FLG nanosheets can not only enhance the overall electrical conductivity and facilitate the ion diffusion greatly,but alleviate the large volume expansion of Sn S effectively and maintain the electrode integrity during cycling.Thus,the densely compacted Sn S/FLG composite exhibits superior volumetric lithium and sodium storage,including high volumetric capacities of 1926.5/1051.4 m Ah cm^(-3)at 0.2 A g^(-1),and high retained capacities of 1754.3/760.3 m Ah cm^(-3)after 500cycles at 1.0 A g^(-1).With superior volumetric storage performance and facile scalable synthesis,the Sn S/FLG composite can be a promising anode for practical batteries application.
基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Nos.51621001,51671088 and 51671089)。
文摘Sn-based chalcogenides are considered as one of the most promising anode materials for lithium-ion batteries(LIBs)because of their high capacities through both conversion and alloying reactions.However,the realization of full capacities of Sn-based chalcogenides is mainly hindered by the large volume variation and inferior reversibility of conversion reaction during cycling.In present work,a new ternary Sn SMo-graphene nanosheets(Sn S-Mo-GNs)composite is fabricated by a simple and scalable plasma milling method,in which Sn S nanoparticles are tightly bonded with Mo and GNs.The Mo and GNs additives can effectively alleviate the large volume change of Sn S upon cycling,which leads to a stable electrochemical framework.Moreover,they can significantly suppress the Sn agglomeration in lithiated Sn S,which enables highly reversible conversion reaction during cycling.As anode for LIBs,the Sn S-Mo-GNs composite exhibits a high initial coulombic efficiency of 86.9%(almost complete reversibility of Sn S,~97.3%),high cyclic coulombic efficiency after initial three cycles(>99.5%),and long lifespan(up to 600 cycles).Moreover,it also demonstrates superior electrochemical performance for sodium storage.Thus,this work demonstrates a potential anode for batteries application and provides a viable strategy to obtain highly reversible and stable anodes for lithium/sodium storage.