Low temperature stress is one of the most important factors limiting plant growth and geographical distribution.In order to adapt to low temperature,plants have evolved strategies to acquire cold tolerance,known as,co...Low temperature stress is one of the most important factors limiting plant growth and geographical distribution.In order to adapt to low temperature,plants have evolved strategies to acquire cold tolerance,known as,cold acclimation.Current molecular and genomic studies have reported that annual herbaceous and perennial woody plants share similar cold acclimation mechanisms.However,woody perennials also require extra resilience to survive cold winters.Thus,trees have acquired complex dynamic processes to control the development of dormancy and cold resistance,ensuring successful tolerance during the coldest winter season.In this review,we systemically described how woody plants perceive and transduce cold stress signals through a series of physiological changes such as calcium signaling,membrane lipid,and antioxidant changes altering downstream gene expression and epigenetic modification,ultimately bud dormancy.We extended the discussion and reviewed the processes endogenous phytohormones play in regulating the cold stress.We believe that this review will aid in the comprehension of underlying mechanisms in plant acclimation to cold stress.展开更多
基金funded by the National Natural Science Foundation of China(No.31971682)the Research Startup Fund for High-Level and High-Educated Talents of Nanjing Forestry University.
文摘Low temperature stress is one of the most important factors limiting plant growth and geographical distribution.In order to adapt to low temperature,plants have evolved strategies to acquire cold tolerance,known as,cold acclimation.Current molecular and genomic studies have reported that annual herbaceous and perennial woody plants share similar cold acclimation mechanisms.However,woody perennials also require extra resilience to survive cold winters.Thus,trees have acquired complex dynamic processes to control the development of dormancy and cold resistance,ensuring successful tolerance during the coldest winter season.In this review,we systemically described how woody plants perceive and transduce cold stress signals through a series of physiological changes such as calcium signaling,membrane lipid,and antioxidant changes altering downstream gene expression and epigenetic modification,ultimately bud dormancy.We extended the discussion and reviewed the processes endogenous phytohormones play in regulating the cold stress.We believe that this review will aid in the comprehension of underlying mechanisms in plant acclimation to cold stress.