Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
Viewing the problem of high ene rgy consumption in the process of recovering rare earths from rare earth molten salt electrolysis slag,an environmentally friendly and low carbon process by sub-molten salt decompositio...Viewing the problem of high ene rgy consumption in the process of recovering rare earths from rare earth molten salt electrolysis slag,an environmentally friendly and low carbon process by sub-molten salt decomposition was developed.The thermodynamic analysis of sub-molten salt reaction indicates that the recovery of rare earths from the slag using sub-molten salt medium is thermodynamically feasible.In this process,the rare earth fluoride and lithium in the slag are almost transformed into rare earth hydroxide,sodium fluoride and lithium hydroxide,fluorine and lithium are transferred into the washing solution,and the rare earths in the residues can be leached into solution by acid leaching.Under the optimum reaction conditions of reaction temperature 200℃,reaction time 3 h,NaOH initial concentration 80%,NaOH-Slag mass ratio 3:1,the leaching efficiency of rare earths,fluorine and lithium can reach to 99.05%,98.23% and 99.22%.After evaporation,the fluorine and lithium in the washing solution can be obtained in the forms of sodium fluoride and lithium fluoride,the recovery efficiency reach 95.5%and 92.8%,respectively.The RE oxides(99.53%) can be obtained from the leaching solution after precipitation and roasting.展开更多
Flowering time(FTi)is a major factor determining how quickly cotton plants reach maturity.Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern ...Flowering time(FTi)is a major factor determining how quickly cotton plants reach maturity.Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern China.Yet,few quantitative trait loci(QTLs)or genes regulating early maturity have been reported in cotton,and the underlying regulatory mechanisms are largely unknown.In this study,we characterized 152,68,and 101 loci that were significantly associated with the three key early maturity traits—FTi,flower and boll period(FBP)and whole growth period(WGP),respectively,via four genome-wide association study methods in upland cotton(Gossypium hirsutum).We focused on one major early maturity-related genomic region containing three single nucleotide polymorphisms on chromosome D03,and determined that GhAP1-D3,a gene homologous to Arabidopsis thaliana APETALA1(AP1),is the causal locus in this region.Transgenic plants overexpressing GhAP1-D3 showed significantly early flowering and early maturity without penalties for yield and fiber quality compared to wild-type(WT)plants.By contrast,the mutant lines of GhAP1-D3 generated by genome editing displayed markedly later flowering than the WT.GhAP1-D3 interacted with GhSOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1),a pivotal regulator of FTi,both in vitro and in vivo.Changes in GhAP1-D3 transcript levels clearly affected the expression of multiple key flowering regulatory genes.Additionally,DNA hypomethylation and high levels of H3K9ac affected strong expression of GhAP1-D3 in early-maturing cotton cultivars.We propose that epigenetic modifications modulate GhAP1-D3 expression to positively regulate FTi in cotton through interaction of the encoded GhAP1 with GhSOC1 and affecting the transcription of multiple flowering-related genes.These findings may also lay a foundation for breeding early-maturing cotton varieties in the future.展开更多
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
基金Project supported by the National Key Research and Development Project (2018YFC1903400)the Jiangxi Province Graduate Student Innovation Special Fund Project (203200800389)+2 种基金the Natural Science Foundation of Jiangxi Province (20224BAB204038,20202BAB214014)the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001)the Open Project of Guangxi Key Laboratory of Nonferrous Metals and Characteristic Materials Processing(2022GXYSOF11)。
文摘Viewing the problem of high ene rgy consumption in the process of recovering rare earths from rare earth molten salt electrolysis slag,an environmentally friendly and low carbon process by sub-molten salt decomposition was developed.The thermodynamic analysis of sub-molten salt reaction indicates that the recovery of rare earths from the slag using sub-molten salt medium is thermodynamically feasible.In this process,the rare earth fluoride and lithium in the slag are almost transformed into rare earth hydroxide,sodium fluoride and lithium hydroxide,fluorine and lithium are transferred into the washing solution,and the rare earths in the residues can be leached into solution by acid leaching.Under the optimum reaction conditions of reaction temperature 200℃,reaction time 3 h,NaOH initial concentration 80%,NaOH-Slag mass ratio 3:1,the leaching efficiency of rare earths,fluorine and lithium can reach to 99.05%,98.23% and 99.22%.After evaporation,the fluorine and lithium in the washing solution can be obtained in the forms of sodium fluoride and lithium fluoride,the recovery efficiency reach 95.5%and 92.8%,respectively.The RE oxides(99.53%) can be obtained from the leaching solution after precipitation and roasting.
基金funded by the National Natural Science Foundation of China(31971986 and 32260478)the Education Technology Innovation Project of Gansu Province(2022QB-076)+2 种基金the Gansu Province Science and Technology Program(20JR10RA520)the Biological Breeding program of Gansu Academy of Agricultural Sciences(2022GAAS04)the Tianshan talent plan of Xinjiang Autonomous Region(2021)。
文摘Flowering time(FTi)is a major factor determining how quickly cotton plants reach maturity.Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern China.Yet,few quantitative trait loci(QTLs)or genes regulating early maturity have been reported in cotton,and the underlying regulatory mechanisms are largely unknown.In this study,we characterized 152,68,and 101 loci that were significantly associated with the three key early maturity traits—FTi,flower and boll period(FBP)and whole growth period(WGP),respectively,via four genome-wide association study methods in upland cotton(Gossypium hirsutum).We focused on one major early maturity-related genomic region containing three single nucleotide polymorphisms on chromosome D03,and determined that GhAP1-D3,a gene homologous to Arabidopsis thaliana APETALA1(AP1),is the causal locus in this region.Transgenic plants overexpressing GhAP1-D3 showed significantly early flowering and early maturity without penalties for yield and fiber quality compared to wild-type(WT)plants.By contrast,the mutant lines of GhAP1-D3 generated by genome editing displayed markedly later flowering than the WT.GhAP1-D3 interacted with GhSOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1),a pivotal regulator of FTi,both in vitro and in vivo.Changes in GhAP1-D3 transcript levels clearly affected the expression of multiple key flowering regulatory genes.Additionally,DNA hypomethylation and high levels of H3K9ac affected strong expression of GhAP1-D3 in early-maturing cotton cultivars.We propose that epigenetic modifications modulate GhAP1-D3 expression to positively regulate FTi in cotton through interaction of the encoded GhAP1 with GhSOC1 and affecting the transcription of multiple flowering-related genes.These findings may also lay a foundation for breeding early-maturing cotton varieties in the future.