The microphysical characteristics of wintertime cold clouds in North China were investigated from 22 aircraft observation flights from 2014 to 2017,2020,and 2021.The clouds were generated by mesoscale weather systems ...The microphysical characteristics of wintertime cold clouds in North China were investigated from 22 aircraft observation flights from 2014 to 2017,2020,and 2021.The clouds were generated by mesoscale weather systems with little orographic component.Over the mixed-phase temperature range(–40℃to 0℃),the average fraction of liquid,mixedphase,and ice cloud was 4.9%,23.3%,and 71.8%,respectively,and the probability distribution of ice mass fraction was a half-U-shape,suggesting that ice cloud was the primary cloud type.The wintertime mixed-phase clouds in North China were characterized by large cloud droplet number concentration,small liquid water content(LWC),and small effective diameter of cloud droplets.The main reason for larger cloud droplet number concentration and smaller effective diameter of cloud droplets was the heavy pollution in winter in North China,while for smaller LWC was the lower temperature during flights and the difference in air mass type.With the temperature increasing,cloud droplet number concentration,LWC,and the size of ice particles increased,but ice number concentration and effective diameter of cloud droplets decreased,similar to other mid-latitude regions,indicating the similarity in the temperature dependence of cloud properties of mixed-phase clouds.The variation of the cloud properties and ice habit at different temperatures indicated the operation of the aggregation and riming processes,which were commonly present in the wintertime mixed-phase clouds.This study fills a gap in the aircraft observation of wintertime cold clouds in North China.展开更多
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c...Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.展开更多
A field experiment was conducted in Tianjin, China from September 9-30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sen...A field experiment was conducted in Tianjin, China from September 9-30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sensing instruments, wind profile radar (WPR), microwave radiometer (MWR) and micro-pulse lidar (MPL), to detect the vertical profiles of winds, temperature, and aerosol backscattering coefficient and to measure the vertical profiles of surface pollutants (aerosol, CO, SO2, NOx), and also collected sonic anemometers data from a 255-m meteorological tower. Based on these measurements, the evolution of the PBL was estimated. The averaged PBL height was about 1000-1300 m during noon/afternoon-time, and 200-300 m during night-time. The PBL height and the aerosol concentrations were anti-correlated during clear and haze conditions. The averaged maximum PBL heights were 1.08 and 1.70 km while the averaged aerosol concentrations were 52 and 17 μg/m&3 under haze and clear sky conditions, respectively, The influence of aerosols and clouds on solar radiation was observed based on sonic anemometers data collected from the 255-m meteorological tower. The heat flux was found significantly decreased by haze (heavy pollution) or cloud, which tended to depress the development of PBL, while the repressed structure of PBL further weakened the diffusion of pollutants, leading to heavy pollution. This possible positive feedback cycle (more aerosols→lower PBL height → more aerosols) would induce an acceleration process for heavy ground pollution in megacities.展开更多
Based on observational data of ozone (O3) and nitrogen oxide (NOx) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011, the temporal and spatial ...Based on observational data of ozone (O3) and nitrogen oxide (NOx) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011, the temporal and spatial characteristics of mixing ratios were analyzed. The major findings include: urban O3 mixing ratios are low and NOx mixing ratios are always high near the road in November. Vertical variations of the gases are significantly different in and above the planetary boundary layer. The mixing ratio of O3 is negatively correlated with that of NOx and they are positively correlated with air temperature, which is the main factor directly causing vertical variation of O3 and NOx mixing ratios at 600-2100 m altitude. The NOx mixing ratios elevated during the heating period, while the O3 mixing ratios decreased: these phenomena are more significant at high altitudes compared to lower altitudes. During November, air masses in the urban areas of Beijing are brought by northwesterly winds, which transport O3 and NOx at low mixing ratios. Due to Beijing's natural geographical location, northwest air currents arc beneficial to the dilution and dispersion of pollutants, which can result in lower O3 and NOx background values in the Beijing urban area.展开更多
Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has bee...Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has been shown to significantly activate in response to hypoxia.The underlying mechanism for activation of this pathway in the pathogenesis of BPH remains unclear.Materials and methods We constructed HIF-1αoverexpression and knockdown BPH stromal(WPMY-1)and epithelial(BPH-1)cell lines,which were cultured under different oxygen conditions(hypoxia,normoxia,and hypoxia+HIF-1αinhibitor).Quantitative real-time polymerase chain reaction(qPCR)and Western blotting were applied to detect the expression of the HIF-1α/VEGF pathway.Cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 and flow cytometry.We used the miRWalk 2.0 database and Western blotting to predict the potential miRNA that selectively targets the HIF-1α/VEGF pathway,and verified the prediction by qPCR and dual-luciferase assays.Results In a BPH stromal cell line(WPMY-1),the expression of VEGF was in accordance with HIF-1αlevels,elevated in the overexpression cells and decreased in the knockdown cells.Hypoxia-induced HIF-1αoverexpression,which could be reversed by a HIF-1αinhibitor.Moreover,the HIF-1αinhibitor significantly depressed cellular proliferation and promoted apoptosis in hypoxic conditions,assessed by Cell Counting Kit-8 and flow cytometry.However,in the BPH epithelial cell line(BPH-1),the expression level of HIF-1αdid not influence the expression of VEGF.Finally,a potential miRNA,miR-17-5p,regulating the HIF-1α/VEGF pathway was predicted from the miRWalk 2.0 database and Western blotting,and verified by qPCR and dual-luciferase assay.Conclusions In hypoxia,activation of the HIF-1α/VEGF pathway plays a crucial role in regulating cell proliferation in a BPH stromal cell line.Regulation by miR-17-5p may be the potential mechanism for the activation of this pathway.Regulation of this pathway may be involved in the pathogenesis of BPH.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41925023, 91744208, 41575073, 41621005, and 42075084)by the Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2017YFA0604002 and 2016YFC0200503)supported by the Collaborative Innovation Center of Climate Change, Jiangsu Province
文摘The microphysical characteristics of wintertime cold clouds in North China were investigated from 22 aircraft observation flights from 2014 to 2017,2020,and 2021.The clouds were generated by mesoscale weather systems with little orographic component.Over the mixed-phase temperature range(–40℃to 0℃),the average fraction of liquid,mixedphase,and ice cloud was 4.9%,23.3%,and 71.8%,respectively,and the probability distribution of ice mass fraction was a half-U-shape,suggesting that ice cloud was the primary cloud type.The wintertime mixed-phase clouds in North China were characterized by large cloud droplet number concentration,small liquid water content(LWC),and small effective diameter of cloud droplets.The main reason for larger cloud droplet number concentration and smaller effective diameter of cloud droplets was the heavy pollution in winter in North China,while for smaller LWC was the lower temperature during flights and the difference in air mass type.With the temperature increasing,cloud droplet number concentration,LWC,and the size of ice particles increased,but ice number concentration and effective diameter of cloud droplets decreased,similar to other mid-latitude regions,indicating the similarity in the temperature dependence of cloud properties of mixed-phase clouds.The variation of the cloud properties and ice habit at different temperatures indicated the operation of the aggregation and riming processes,which were commonly present in the wintertime mixed-phase clouds.This study fills a gap in the aircraft observation of wintertime cold clouds in North China.
基金funded by the National Key Research and Devel-opment Program of China[grant number 2017YFC1501405]the National Natural Science Foundation of China[grant numbers 41975180,41705119,and 41575131]the National Center of Meteorology,Abu Dhabi,AE(UAE Research Program for Rain Enhancement Science)。
文摘Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.
基金supported by National Natural Science Foundation of China(NSFC) under Grant Nos.41175007 and 40905060the Project of Scientific and Technological New Star of Beijing under Grant No.2010B029+1 种基金the National Basic Research Program of China(2011CB403401)China Meteorological Administration (CMA) under Grant No.GYHY200806001-4
文摘A field experiment was conducted in Tianjin, China from September 9-30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sensing instruments, wind profile radar (WPR), microwave radiometer (MWR) and micro-pulse lidar (MPL), to detect the vertical profiles of winds, temperature, and aerosol backscattering coefficient and to measure the vertical profiles of surface pollutants (aerosol, CO, SO2, NOx), and also collected sonic anemometers data from a 255-m meteorological tower. Based on these measurements, the evolution of the PBL was estimated. The averaged PBL height was about 1000-1300 m during noon/afternoon-time, and 200-300 m during night-time. The PBL height and the aerosol concentrations were anti-correlated during clear and haze conditions. The averaged maximum PBL heights were 1.08 and 1.70 km while the averaged aerosol concentrations were 52 and 17 μg/m&3 under haze and clear sky conditions, respectively, The influence of aerosols and clouds on solar radiation was observed based on sonic anemometers data collected from the 255-m meteorological tower. The heat flux was found significantly decreased by haze (heavy pollution) or cloud, which tended to depress the development of PBL, while the repressed structure of PBL further weakened the diffusion of pollutants, leading to heavy pollution. This possible positive feedback cycle (more aerosols→lower PBL height → more aerosols) would induce an acceleration process for heavy ground pollution in megacities.
基金supported by the Beijing Post-Doctoral Work Foundation under Grant (No. 2011ZZ-86)the Beijing Science and Technology Nova Project (No.2010B029)the National Natural Science Foundation of China (No. 40905060)
文摘Based on observational data of ozone (O3) and nitrogen oxide (NOx) mixing ratios on the ground and at high altitude in urban areas of Beijing during a period of six days in November 2011, the temporal and spatial characteristics of mixing ratios were analyzed. The major findings include: urban O3 mixing ratios are low and NOx mixing ratios are always high near the road in November. Vertical variations of the gases are significantly different in and above the planetary boundary layer. The mixing ratio of O3 is negatively correlated with that of NOx and they are positively correlated with air temperature, which is the main factor directly causing vertical variation of O3 and NOx mixing ratios at 600-2100 m altitude. The NOx mixing ratios elevated during the heating period, while the O3 mixing ratios decreased: these phenomena are more significant at high altitudes compared to lower altitudes. During November, air masses in the urban areas of Beijing are brought by northwesterly winds, which transport O3 and NOx at low mixing ratios. Due to Beijing's natural geographical location, northwest air currents arc beneficial to the dilution and dispersion of pollutants, which can result in lower O3 and NOx background values in the Beijing urban area.
基金the financial support granted from the Shandong Province Key Research and Development Projects(no.2016GSF201147)the Science and Technology Development Program of Jinan(no.201704127).
文摘Background The development of benign prostatic hyperplasia(BPH)is closely related to hypoxia in the prostatic stroma,and the hypoxia-inducible factor-1α/vascular endothelial growth factor(HIF-1α/VEGF)pathway has been shown to significantly activate in response to hypoxia.The underlying mechanism for activation of this pathway in the pathogenesis of BPH remains unclear.Materials and methods We constructed HIF-1αoverexpression and knockdown BPH stromal(WPMY-1)and epithelial(BPH-1)cell lines,which were cultured under different oxygen conditions(hypoxia,normoxia,and hypoxia+HIF-1αinhibitor).Quantitative real-time polymerase chain reaction(qPCR)and Western blotting were applied to detect the expression of the HIF-1α/VEGF pathway.Cell proliferation and apoptosis were analyzed by Cell Counting Kit-8 and flow cytometry.We used the miRWalk 2.0 database and Western blotting to predict the potential miRNA that selectively targets the HIF-1α/VEGF pathway,and verified the prediction by qPCR and dual-luciferase assays.Results In a BPH stromal cell line(WPMY-1),the expression of VEGF was in accordance with HIF-1αlevels,elevated in the overexpression cells and decreased in the knockdown cells.Hypoxia-induced HIF-1αoverexpression,which could be reversed by a HIF-1αinhibitor.Moreover,the HIF-1αinhibitor significantly depressed cellular proliferation and promoted apoptosis in hypoxic conditions,assessed by Cell Counting Kit-8 and flow cytometry.However,in the BPH epithelial cell line(BPH-1),the expression level of HIF-1αdid not influence the expression of VEGF.Finally,a potential miRNA,miR-17-5p,regulating the HIF-1α/VEGF pathway was predicted from the miRWalk 2.0 database and Western blotting,and verified by qPCR and dual-luciferase assay.Conclusions In hypoxia,activation of the HIF-1α/VEGF pathway plays a crucial role in regulating cell proliferation in a BPH stromal cell line.Regulation by miR-17-5p may be the potential mechanism for the activation of this pathway.Regulation of this pathway may be involved in the pathogenesis of BPH.