This paper presents a novel 3D measurement method for a light field camera(LFC)in which 3D information of object space is encoded by a microlens array(MLA).The light ray corresponding to each pixel of the LFC is calib...This paper presents a novel 3D measurement method for a light field camera(LFC)in which 3D information of object space is encoded by a microlens array(MLA).The light ray corresponding to each pixel of the LFC is calibrated.Once the matching points from at least two subviews exhibit sub-pixel accuracy,the 3D coordinates can be calculated optimally by intersecting light rays of these points matched through phase coding.Moreover,the proposed method obtains high-resolved results that exceed the subview resolution due to the virtual continuous phase search strategy.Finally,we combine the LFC and coaxial projection to solve the 3D data loss caused by shadowing and occlusion problems.Experimental results verify the feasibility of the proposed method,and the measurement error is about 30μm in a depth range of 60 mm.展开更多
文摘This paper presents a novel 3D measurement method for a light field camera(LFC)in which 3D information of object space is encoded by a microlens array(MLA).The light ray corresponding to each pixel of the LFC is calibrated.Once the matching points from at least two subviews exhibit sub-pixel accuracy,the 3D coordinates can be calculated optimally by intersecting light rays of these points matched through phase coding.Moreover,the proposed method obtains high-resolved results that exceed the subview resolution due to the virtual continuous phase search strategy.Finally,we combine the LFC and coaxial projection to solve the 3D data loss caused by shadowing and occlusion problems.Experimental results verify the feasibility of the proposed method,and the measurement error is about 30μm in a depth range of 60 mm.