期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of a 4.1 Mb inversion harboring the stripe rust resistance gene YR86 on wheat chromosome 2AL
1
作者 Qiang Cao Zhanwang Zhu +13 位作者 dengan xu Jianhui Wu Xiaowan xu Yan Dong Yingjie Bian Fugong Ding Dehui Zhao Yang Tu Ling Wu Dejun Han Caixia Lan Xianchun Xia Zhonghu He Yuanfeng Hao 《The Crop Journal》 SCIE CSCD 2024年第4期1168-1175,共8页
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations... Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding. 展开更多
关键词 Adult-plant resistance Chromosomal inversion Puccinia striiformis Triticum aestivum
下载PDF
In silico curation of QTL-rich clusters and candidate gene identification for plant height of bread wheat 被引量:1
2
作者 dengan xu Chenfei Jia +12 位作者 Xinru Lyu Tingzhi Yang Huimin Qin Yalin Wang Qianlin Hao Wenxing Liu xuehuan Dai Jianbin Zeng Hongsheng Zhang Xianchun Xia Zhonghu He Shuanghe Cao Wujun Ma 《The Crop Journal》 SCIE CSCD 2023年第5期1480-1490,共11页
Many genetic loci for wheat plant height(PH) have been reported, and 26 dwarfing genes have been catalogued. To identify major and stable genetic loci for PH, here we thoroughly summarized these functionally or geneti... Many genetic loci for wheat plant height(PH) have been reported, and 26 dwarfing genes have been catalogued. To identify major and stable genetic loci for PH, here we thoroughly summarized these functionally or genetic verified dwarfing loci from QTL linkage analysis and genome-wide association study published from 2003 to 2022. A total of 332 QTL, 270 GWAS loci and 83 genes for PH were integrated onto chromosomes according to their locations in the IWGSC RefSeq v2.1 and 65 QTL-rich clusters(QRC) were defined. Candidate genes in each QRC were predicted based on IWGSC Annotation v2.1 and the information on functional validation of homologous genes in other species. A total of 38 candidate genes were predicted for 65 QRC including three GA2ox genes in QRC-4B-IV, QRC-5A-VIII and QRC-6A-II(Rht24) as well as GA 20-oxidase 2(TaSD1-3A) in QRC-3A-IV. These outcomes lay concrete foundations for mapbased cloning of wheat dwarfing genes and application in breeding. 展开更多
关键词 QTL-rich clusters Plant height Semi-dwarfism Reduced height genes Candidate genes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部