Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed t...Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed to solve the limited label problem via domain adaptation methods.However,they mainly focus on reducing domain discrepancy without considering task‐specific decision boundaries,which may lead to feature distribution overmatching and therefore make it hard to match within a large domain gap completely.A novel self‐training maximum classifier discrepancy method for EEG classification is proposed in this study.The proposed approach detects samples from a new subject beyond the support of the existing source subjects by maximising the discrepancies between two classifiers'outputs.Besides,a self‐training method that uses unlabelled test data to fully use knowledge from the new subject and further reduce the domain gap is proposed.Finally,a 3D Cube that incorporates the spatial and frequency information of the EEG data to create input features of a Convolutional Neural Network(CNN)is constructed.Extensive experiments on SEED and SEED‐IV are conducted.The experimental evaluations exhibit that the proposed method can effectively deal with domain transfer problems and achieve better performance.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 61866039in part by the Natural Science Foundation of Chongqing,China(No.cstc2019jscxmbdxX0021)+1 种基金in part by the Excellent Youths Project for Basic Research of Yunnan Province(No.202101AW070015)in part by the Key Cooperation Project of Chongqing Municipal Education Commission(No.HZ2021008).
文摘Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed to solve the limited label problem via domain adaptation methods.However,they mainly focus on reducing domain discrepancy without considering task‐specific decision boundaries,which may lead to feature distribution overmatching and therefore make it hard to match within a large domain gap completely.A novel self‐training maximum classifier discrepancy method for EEG classification is proposed in this study.The proposed approach detects samples from a new subject beyond the support of the existing source subjects by maximising the discrepancies between two classifiers'outputs.Besides,a self‐training method that uses unlabelled test data to fully use knowledge from the new subject and further reduce the domain gap is proposed.Finally,a 3D Cube that incorporates the spatial and frequency information of the EEG data to create input features of a Convolutional Neural Network(CNN)is constructed.Extensive experiments on SEED and SEED‐IV are conducted.The experimental evaluations exhibit that the proposed method can effectively deal with domain transfer problems and achieve better performance.