The Yubei-Tangbei area in the southern Tarim Basin is one of the best-preserved Early Paleozoic northeast-southwest trending fold-and-thrust belts within this basin.This area is crucial for the exploration of primary ...The Yubei-Tangbei area in the southern Tarim Basin is one of the best-preserved Early Paleozoic northeast-southwest trending fold-and-thrust belts within this basin.This area is crucial for the exploration of primary hydrocarbon reservoirs in northwestern China.In this study,we constructed the structural geometric morphology of the Yubei-Tangbei area using geophysical logs,drilling,and recent two-and three-dimensional(2-D and 3-D)seismic data.The Early Paleozoic fault-propagation folds,the Tangnan triangle zone,fault-detachment folds,and trishear fault-propagation folds developed with the detachment of the Middle Cambrian gypsum–salt layer.According to a detailed chronostratigraphic framework,the growth strata in the Upper Ordovician–Lower Silurian layer formed by onlapping the back limb of the asymmetric fault-propagation folds,which therefore defines the timing of deformations.The changes in kink band hinges and amplitudes in the Permian–Carboniferous and Cenozoic folding strata suggest that the evolution of the fold-and-thrust belts followed a sequential evolution process rather than a simultaneous one.Above the pre-existing Precambrian basement structure,the Yubei-Tangbei fold-and-thrust belts can be divided into four tectonic evolution stages:Late Cambrian,Late Ordovician to Early Carboniferous,Carboniferous to Permian,and Cenozoic.The northwestern-verging Cherchen Fault is part of the piedmont fold-and-thrust system of the southern Tarim foreland basin.We interpreted its strata as a breakthrough trishear fault-propagation fold that developed in three phases:Mid–Late Ordovician,Silurian to Middle Devonian,and Triassic to present.These tectonic events are responses of the Altyn-Tagh and Kunlun collisional orogenic belts and the Indian-Eurasian collision.The inherited deformation and structural modification in the southern Tarim Basin may be an indicator of the growth and evolution of peripheral orogens.展开更多
The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data ...The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles. Among these strata, seven unconformities are observed and distributed at the bases of: the Permian Jiamuhe Formation, the Permian Fengcheng Formation, the Triassic Baikouquan Formation, the Jurassic Badaowan Formation, the Jurassic Xishanyao Formation, the Cretaceous Tugulu Group and the Paleogene. On the basis of balanced sections, these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic. In conjunction with the currently understood tectonic background of the sur- rounding areas, the following conclusions are proposed: the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian; the unconformities at the bases of the Triassic Baikoucluan and Jurassic Badaowan formations are closely related to the late Permian Triassic Durbut sinistral slip fault; the unconformities at the bases of the middle Jurassic Xisbanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic -early Cretaceous, and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift. All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.展开更多
The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Ceno...The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic-Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic-Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous-Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed.展开更多
New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aram...New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aramay pluton yields an age of 300.7 ~ 2.3 Ma for the enclave and 300.0 ~ 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421 0.703526) and positive eHf(t) (5.5--14.1) and eNd(t) (7.3--8.1) values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive eHf(t) (7.6--13.2, 14.2--14.9) and εNd(t) (6.8-8.3, ~6.9) values. They are enriched in LILEs (Rb, Ba and U) and LREE and depleted in HFSEs (Nb and Ta) with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust-and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West lun^gar.展开更多
The Carboniferous to Permian tectono-sedimentary evolution of the southern Junggar area brings new insights into understanding the subduction-collision processes in the northern Tianshan region.Integrating geophysics,...The Carboniferous to Permian tectono-sedimentary evolution of the southern Junggar area brings new insights into understanding the subduction-collision processes in the northern Tianshan region.Integrating geophysics,geochemistry,and geochronology approaches,this study investigates the Carboniferous-Permian strata in the southern Junggar Basin.The results have revealed three distinct tectono-stratigraphic evolutionary stages,each marked by a distinctive volcano-sedimentary sequence.The Early Carboniferous strata suggest intense volcanic activities in the southern Junggar area.During the Late Carboniferous,the southern Junggar Basin was controlled by normal faulting in an extensional setting,receiving sedimentary inputs from the Junggar terrane.The Lower Permian,unconformably overlying the Upper Carboniferous,was shaped by an extensional regime and is comprised by volcano-clastic sequences that received detritus from the Yili-Central Tianshan block.These findings indicate that a Late Carboniferous forearc basin developed in the southern Junggar area,and it evolved into a post-collisional rift in the Early Permian.This period marked a dynamic shift from bidirectional subduction(rollback)to the detachment of the North Tianshan oceanic slab.We propose that the collision between the YiliCentral Tianshan block and the Junggar terrane,along with the closure of the North Tianshan Ocean,likely occurred in the Late Carboniferous(ca.306-303 Ma).展开更多
Recent studies indicate that there is a large buried body developing in the Sangzhi-Shimen tectonic belt,which is between the Xuefeng intracontinental deformation system and the Xiangexi tectonic belt.In order to expl...Recent studies indicate that there is a large buried body developing in the Sangzhi-Shimen tectonic belt,which is between the Xuefeng intracontinental deformation system and the Xiangexi tectonic belt.In order to explore the tectonic evolution and main deformation-controlling factors of the buried body,we carried out a series of studies and built two new models based on the latest seismic data and fault-related fold theory.These new models show that the deformation of the buried body in the north segment of the study area is different from that in the middle-south segment.After further study,we found the main factors leading to these differences were:(1)the magnitude of the principal stress,(2)the range of tectonic movements,and(3)the morphology and depth of the basement detachment.Subsequently,with the physical simulation experiments,a 3D evolution model of the study area was built.展开更多
Studying the geologic architecture of the Xiong'an New Area will provide important basis for the evaluation of crustal stability, urban planning and infrastructural projects in this region, and it is also of great...Studying the geologic architecture of the Xiong'an New Area will provide important basis for the evaluation of crustal stability, urban planning and infrastructural projects in this region, and it is also of great significance in exploring the occurrence of oil and gas, geothermal, hot dry rock and other resources. The stratigraphic system of the study area is established by using latest high quality seismic reflection and deep borehole data. Characteristics of the major faults developed in the study area are finely depicted with the method of structural analysis. Tectonic evolution of Xiong'an and adjacent areas is reconstructed by using balanced geological cross-section technique. The tectonic activity of the study area is discussed on the basis of the development of secondary faults and the distribution of active earthquakes across the region. This study demonstrates that Xiong'an New Area is located at the transfer zone of the central and northern Jizhong Depression. There are three regional unconformities developed in this area, by which four structural layers are sub-divided. Controlled by the Taihang Mountain piedmont fault, the Daxing fault, the Rongcheng fault and the Niudong fault, the structural framework of the study area is characterized by intervening highs with sags. This structural pattern has an important controlling over the reservoir characteristics, hydrocarbon accumulation and the distribution of geothermal resources and hot dry rock within this region. Rifting in this area began in the early Paleogene, exhibiting typical episodic character and became inactive in Neogene. The development feature of secondary faults along with the distribution of active earthquakes indicate that Xiong'an New Area has been in a relatively stable tectonic setting since the Neogene, while the Baxian Sag and other structural units to the east of it have obviously been in a rather active environment.展开更多
The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.T...The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.The study on the Carboniferous volcanic reservoirs and their hydrocarbon accumulation elements is significant for clarifying the orientation for exploration.In this paper,based on 37 reserves reports and 3200 reservoir test data,the Carboniferous volcanic reservoirs in Junggar Basin were discussed from the prospective of lithology and lithofacies,physical properties,reservoir types,main controls on hydrocarbon accumulation,and hydrocarbon accumulation patterns.It is found that the Carboniferous in the basin is mostly in the multi-island ocean-volcanic island arc structural-sedimentary environment,so it is geologically eligible for forming in-situ volcanic reservoirs.The volcanic rocks are:(1)mostly distributed along deep and large faults,with the lithology and lithofacies controlled by volcanic architectures;(2)dominantly lava,followed by volcaniclastic lava and volcaniclastic rock;(3)distributed in the periphery of hydrocarbon-generating sag and within the source rocks horizontally,and concentrated in the weathering crust at the top longitudinally,possibly leading to reworked weathering crust reservoir;and(4)liable to form inner reservoirs.The volcanic reservoirs can be concluded into four hydrocarbon accumulation patterns,i.e.,self-generating&self-storing in paleo-uplift and vertical migration,self-generating&self-storing in paleo-uplift and lateral migration,young-generating&old-storing in fault zone and vertical migration,and young-generating&old-storing in paleo-uplift and lateral migration.Future exploration will focus on the effective source rock development and hydrocarbon supply zones and the selfgenerating&self-storing and young-generating&old-storing patterns.The exploration prospects are determined to be the Ludong-Wucaiwan-Baijiahai slope belt and the southern slope belt of the Shaqi uplift(self-generating&self-storing pattern)in eastern Junggar,and the fault and nasal arch zone at the northwestern margin and the nasal arch zone(deep and large structure)in the Luxi area(younggenerating&old-storing pattern)in western Junggar.展开更多
Devonian cutinitic liptobiolith is a special cuticle-rich coal formed during the early stage of land plant evolution. In China, this special coal has previously only been reported in the Yangtze area, with the Luquan ...Devonian cutinitic liptobiolith is a special cuticle-rich coal formed during the early stage of land plant evolution. In China, this special coal has previously only been reported in the Yangtze area, with the Luquan Devonian cutinitic liptobiolith of Yunnan Province being the most well-known. Recently, this type of coal was first discovered in the Bulonggoer Sag, to the northwest of the Junggar Basin, NW Xinjiang. Its geological age is regarded as the Givetian period of the late Middle Devonian,which is equivalent to the age of the Luquan Devonian coal. The cutinitic liptobiolith from NW Xinjiang has a distinct sheet-like texture resembling a stack of paper or leaf sheets in appearance, and so it is commonly called "paper coal" or "leaf coal". Ribbonlike cutinite(thick-walled type) is the most abundant maceral in the coal(>60% and up to 80%, on a mineral-free basis), followed by ribbon-like collotelinite. The NW Xinjiang and Luquan cutinitic liptobioliths share similar maceral compositions;while their coal-forming plants and depositional conditions are distinct. The NW Xinjiang cutinitic liptobiolith was deposited in a regional fluvial or flood plain condition, with lycopsids as the dominant coal-forming plants. In contrast, the Luquan cutinitic liptobiolith formed in a coastal-lagoon environment, with primitive ferns as the predominant coal-forming plants, followed by lycopsids. The saturated fractions of the NW Xinjiang and Luquan liptobioliths are mainly composed of tetracyclic diterpanes. However, the tetracyclic diterpane compositions in the NW Xinjiang cutinitic liptobiolith are distinct from those in the Luquan Devonian coal:The former is dominated by atisanes and the latter is mainly composed of phyllocladanes. Different coal-forming plants may have contributed to the distinct tetracyclic diterpane compositions.展开更多
基金This research was supported by the National Key R and D Plan of China(2017YFC0601405)the National Natural Science Foundation of China(U19B6003 and 41702110).
文摘The Yubei-Tangbei area in the southern Tarim Basin is one of the best-preserved Early Paleozoic northeast-southwest trending fold-and-thrust belts within this basin.This area is crucial for the exploration of primary hydrocarbon reservoirs in northwestern China.In this study,we constructed the structural geometric morphology of the Yubei-Tangbei area using geophysical logs,drilling,and recent two-and three-dimensional(2-D and 3-D)seismic data.The Early Paleozoic fault-propagation folds,the Tangnan triangle zone,fault-detachment folds,and trishear fault-propagation folds developed with the detachment of the Middle Cambrian gypsum–salt layer.According to a detailed chronostratigraphic framework,the growth strata in the Upper Ordovician–Lower Silurian layer formed by onlapping the back limb of the asymmetric fault-propagation folds,which therefore defines the timing of deformations.The changes in kink band hinges and amplitudes in the Permian–Carboniferous and Cenozoic folding strata suggest that the evolution of the fold-and-thrust belts followed a sequential evolution process rather than a simultaneous one.Above the pre-existing Precambrian basement structure,the Yubei-Tangbei fold-and-thrust belts can be divided into four tectonic evolution stages:Late Cambrian,Late Ordovician to Early Carboniferous,Carboniferous to Permian,and Cenozoic.The northwestern-verging Cherchen Fault is part of the piedmont fold-and-thrust system of the southern Tarim foreland basin.We interpreted its strata as a breakthrough trishear fault-propagation fold that developed in three phases:Mid–Late Ordovician,Silurian to Middle Devonian,and Triassic to present.These tectonic events are responses of the Altyn-Tagh and Kunlun collisional orogenic belts and the Indian-Eurasian collision.The inherited deformation and structural modification in the southern Tarim Basin may be an indicator of the growth and evolution of peripheral orogens.
基金financially supported by the National Science and Technology Major Project(Grant No.2011ZX05008-001)the National Natural Science Foundation of China(Grant No.40739906)the Chinese State 973 Project(Grant No.2011CB201100)
文摘The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles. Among these strata, seven unconformities are observed and distributed at the bases of: the Permian Jiamuhe Formation, the Permian Fengcheng Formation, the Triassic Baikouquan Formation, the Jurassic Badaowan Formation, the Jurassic Xishanyao Formation, the Cretaceous Tugulu Group and the Paleogene. On the basis of balanced sections, these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic. In conjunction with the currently understood tectonic background of the sur- rounding areas, the following conclusions are proposed: the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian; the unconformities at the bases of the Triassic Baikoucluan and Jurassic Badaowan formations are closely related to the late Permian Triassic Durbut sinistral slip fault; the unconformities at the bases of the middle Jurassic Xisbanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic -early Cretaceous, and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift. All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.
基金financially supported by the National Science and Technology Major Project (No.2011ZX05008-001)the Natural Science Foundation of China (No.40739906)the Chinese State 973 Project(No. 2011CB201100)
文摘The Wulungu Depression is the northernmost first-order tectonic unit in the Junggar Basin. It can be divided into three sub-units: the Hongyan step-fault zone, the Suosuoquan sag and the Wulungu south slope. The Cenozoic strata in the basin are intact and Mesozoic-Cenozoic deformation can be observed in the Wulungu step-fault zone, so this is an ideal place to study the Mesozoic-Cenozoic deformation. By integration of fault-related folding theories, regional geology and drilling data, the strata of the Cretaceous-Paleogene systems are divided into small layers which are selected as the subjects of this research. The combination of the developing unconformity with existing growth strata makes it conceivable that faults on the step-fault zone have experienced different degrees of reactivation of movement since the Cretaceous. Evolutionary analyses of the small layers using 2D-Move software showed certain differences in the reactivation of different segments of the Wulungu Depression such as the timing of reactivation of thrusting, for which the reactivity time of the eastern segment was late compared with those of the western and middle segments. In addition the resurrection strength was similarly slightly different, with the shortening rate being higher in the western segment than in the other segments. Moreover, the thrust fault mechanism is basement-involved combined with triangle shear fold, for which a forward evolution model was proposed.
基金financially supported by the National Science and Technology Major Project(No. 2011ZX05008-001)the National Natural Science Foundation of China(No.40739906)the Chinese State 973 Project(No. 2011CB201100)
文摘New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aramay pluton yields an age of 300.7 ~ 2.3 Ma for the enclave and 300.0 ~ 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421 0.703526) and positive eHf(t) (5.5--14.1) and eNd(t) (7.3--8.1) values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive eHf(t) (7.6--13.2, 14.2--14.9) and εNd(t) (6.8-8.3, ~6.9) values. They are enriched in LILEs (Rb, Ba and U) and LREE and depleted in HFSEs (Nb and Ta) with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust-and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West lun^gar.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172124,41702110,42330810 and U19B6003-01-01)the National Key R&D Program of China(Grant No.2023YFF0804302).
文摘The Carboniferous to Permian tectono-sedimentary evolution of the southern Junggar area brings new insights into understanding the subduction-collision processes in the northern Tianshan region.Integrating geophysics,geochemistry,and geochronology approaches,this study investigates the Carboniferous-Permian strata in the southern Junggar Basin.The results have revealed three distinct tectono-stratigraphic evolutionary stages,each marked by a distinctive volcano-sedimentary sequence.The Early Carboniferous strata suggest intense volcanic activities in the southern Junggar area.During the Late Carboniferous,the southern Junggar Basin was controlled by normal faulting in an extensional setting,receiving sedimentary inputs from the Junggar terrane.The Lower Permian,unconformably overlying the Upper Carboniferous,was shaped by an extensional regime and is comprised by volcano-clastic sequences that received detritus from the Yili-Central Tianshan block.These findings indicate that a Late Carboniferous forearc basin developed in the southern Junggar area,and it evolved into a post-collisional rift in the Early Permian.This period marked a dynamic shift from bidirectional subduction(rollback)to the detachment of the North Tianshan oceanic slab.We propose that the collision between the YiliCentral Tianshan block and the Junggar terrane,along with the closure of the North Tianshan Ocean,likely occurred in the Late Carboniferous(ca.306-303 Ma).
基金supported by the National Science and Technology Major Projects(No.2011ZX05008-001)the National Natural Science Foundation of China(Nos.40739906,41272237)
文摘Recent studies indicate that there is a large buried body developing in the Sangzhi-Shimen tectonic belt,which is between the Xuefeng intracontinental deformation system and the Xiangexi tectonic belt.In order to explore the tectonic evolution and main deformation-controlling factors of the buried body,we carried out a series of studies and built two new models based on the latest seismic data and fault-related fold theory.These new models show that the deformation of the buried body in the north segment of the study area is different from that in the middle-south segment.After further study,we found the main factors leading to these differences were:(1)the magnitude of the principal stress,(2)the range of tectonic movements,and(3)the morphology and depth of the basement detachment.Subsequently,with the physical simulation experiments,a 3D evolution model of the study area was built.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601405)the National Natural Science Foundation of China (Grant No. 41430316)
文摘Studying the geologic architecture of the Xiong'an New Area will provide important basis for the evaluation of crustal stability, urban planning and infrastructural projects in this region, and it is also of great significance in exploring the occurrence of oil and gas, geothermal, hot dry rock and other resources. The stratigraphic system of the study area is established by using latest high quality seismic reflection and deep borehole data. Characteristics of the major faults developed in the study area are finely depicted with the method of structural analysis. Tectonic evolution of Xiong'an and adjacent areas is reconstructed by using balanced geological cross-section technique. The tectonic activity of the study area is discussed on the basis of the development of secondary faults and the distribution of active earthquakes across the region. This study demonstrates that Xiong'an New Area is located at the transfer zone of the central and northern Jizhong Depression. There are three regional unconformities developed in this area, by which four structural layers are sub-divided. Controlled by the Taihang Mountain piedmont fault, the Daxing fault, the Rongcheng fault and the Niudong fault, the structural framework of the study area is characterized by intervening highs with sags. This structural pattern has an important controlling over the reservoir characteristics, hydrocarbon accumulation and the distribution of geothermal resources and hot dry rock within this region. Rifting in this area began in the early Paleogene, exhibiting typical episodic character and became inactive in Neogene. The development feature of secondary faults along with the distribution of active earthquakes indicate that Xiong'an New Area has been in a relatively stable tectonic setting since the Neogene, while the Baxian Sag and other structural units to the east of it have obviously been in a rather active environment.
基金supported by the National Science&Technology Major Project“Distribution Law&Resource Evaluation of Deep Oil&Gas in Petroleum-bearing Basins in China”(No.2017ZX05008-006)PetroChina Key Scientific&Technological Project(Nos.2021DJ07,2019E-2601,2019B-0301).
文摘The Carboniferous volcanic reservoirs in Junggar Basin contain rich hydrocarbon resources,implying a great exploration potential,so that they have become a key replacement target for“three-dimensional exploration”.The study on the Carboniferous volcanic reservoirs and their hydrocarbon accumulation elements is significant for clarifying the orientation for exploration.In this paper,based on 37 reserves reports and 3200 reservoir test data,the Carboniferous volcanic reservoirs in Junggar Basin were discussed from the prospective of lithology and lithofacies,physical properties,reservoir types,main controls on hydrocarbon accumulation,and hydrocarbon accumulation patterns.It is found that the Carboniferous in the basin is mostly in the multi-island ocean-volcanic island arc structural-sedimentary environment,so it is geologically eligible for forming in-situ volcanic reservoirs.The volcanic rocks are:(1)mostly distributed along deep and large faults,with the lithology and lithofacies controlled by volcanic architectures;(2)dominantly lava,followed by volcaniclastic lava and volcaniclastic rock;(3)distributed in the periphery of hydrocarbon-generating sag and within the source rocks horizontally,and concentrated in the weathering crust at the top longitudinally,possibly leading to reworked weathering crust reservoir;and(4)liable to form inner reservoirs.The volcanic reservoirs can be concluded into four hydrocarbon accumulation patterns,i.e.,self-generating&self-storing in paleo-uplift and vertical migration,self-generating&self-storing in paleo-uplift and lateral migration,young-generating&old-storing in fault zone and vertical migration,and young-generating&old-storing in paleo-uplift and lateral migration.Future exploration will focus on the effective source rock development and hydrocarbon supply zones and the selfgenerating&self-storing and young-generating&old-storing patterns.The exploration prospects are determined to be the Ludong-Wucaiwan-Baijiahai slope belt and the southern slope belt of the Shaqi uplift(self-generating&self-storing pattern)in eastern Junggar,and the fault and nasal arch zone at the northwestern margin and the nasal arch zone(deep and large structure)in the Luxi area(younggenerating&old-storing pattern)in western Junggar.
基金supported by the National Natural Science Foundation of China (Grant No. 42073069)。
文摘Devonian cutinitic liptobiolith is a special cuticle-rich coal formed during the early stage of land plant evolution. In China, this special coal has previously only been reported in the Yangtze area, with the Luquan Devonian cutinitic liptobiolith of Yunnan Province being the most well-known. Recently, this type of coal was first discovered in the Bulonggoer Sag, to the northwest of the Junggar Basin, NW Xinjiang. Its geological age is regarded as the Givetian period of the late Middle Devonian,which is equivalent to the age of the Luquan Devonian coal. The cutinitic liptobiolith from NW Xinjiang has a distinct sheet-like texture resembling a stack of paper or leaf sheets in appearance, and so it is commonly called "paper coal" or "leaf coal". Ribbonlike cutinite(thick-walled type) is the most abundant maceral in the coal(>60% and up to 80%, on a mineral-free basis), followed by ribbon-like collotelinite. The NW Xinjiang and Luquan cutinitic liptobioliths share similar maceral compositions;while their coal-forming plants and depositional conditions are distinct. The NW Xinjiang cutinitic liptobiolith was deposited in a regional fluvial or flood plain condition, with lycopsids as the dominant coal-forming plants. In contrast, the Luquan cutinitic liptobiolith formed in a coastal-lagoon environment, with primitive ferns as the predominant coal-forming plants, followed by lycopsids. The saturated fractions of the NW Xinjiang and Luquan liptobioliths are mainly composed of tetracyclic diterpanes. However, the tetracyclic diterpane compositions in the NW Xinjiang cutinitic liptobiolith are distinct from those in the Luquan Devonian coal:The former is dominated by atisanes and the latter is mainly composed of phyllocladanes. Different coal-forming plants may have contributed to the distinct tetracyclic diterpane compositions.