In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su...In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.展开更多
Developing active, robust, and cost-efficient electrocatalysts is critical for oxygen evolution reaction(OER). Here, a novel composite catalyst of Co_(1-x)S embedded in porous dodecahedron carbon hybrid was synthesize...Developing active, robust, and cost-efficient electrocatalysts is critical for oxygen evolution reaction(OER). Here, a novel composite catalyst of Co_(1-x)S embedded in porous dodecahedron carbon hybrid was synthesized by a two-step conversion protocol of a cobalt-based metal-organic framework(ZIF-67). The porous dodecahedron Co_(1-x)S@C composite catalyst was prepared by direct oxidation of ZIF-67 followed by sulfurization reaction. The Co_(1-x)S@C composite exhibit superior OER performance, including a low overpotential of 260 mV for 10 mA/cm2, a small Tafel slope of ~85 mV/dec, outstanding stability over 80 h and almost 100% Faradaic efficiency. The various material characterizations indicate that the excellent activity and strong stability of Co_(1-x)S@C might be attributed to good conductivity of Co_(1-x)S, mesoporous nanostructure, and synergistic effect of Co_(1-x)S encapsulated within porous carbon. This work provides a novel strategy for designing and synthesizing advanced composite展开更多
基金received from the National Natural Science Foundation of China(Nos.21522606,21676246,21476201,21436007,U1462201,and 21376216)supported by Zhejiang Provincial Natural Science Foundation of China(No.LR17B060003)Major Science and Technology Project of Water Pollution Control and Management(No.2017ZX07101)
文摘In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.
基金supported by China Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07101003)Zhejiang Provincial Natural Science Foundation of China (No. LR17B060003)financially supported by the National Science Foundation of China (Nos. 21436007, 21522606, 21476201, 21676246, U1462201, and 21776248)
文摘Developing active, robust, and cost-efficient electrocatalysts is critical for oxygen evolution reaction(OER). Here, a novel composite catalyst of Co_(1-x)S embedded in porous dodecahedron carbon hybrid was synthesized by a two-step conversion protocol of a cobalt-based metal-organic framework(ZIF-67). The porous dodecahedron Co_(1-x)S@C composite catalyst was prepared by direct oxidation of ZIF-67 followed by sulfurization reaction. The Co_(1-x)S@C composite exhibit superior OER performance, including a low overpotential of 260 mV for 10 mA/cm2, a small Tafel slope of ~85 mV/dec, outstanding stability over 80 h and almost 100% Faradaic efficiency. The various material characterizations indicate that the excellent activity and strong stability of Co_(1-x)S@C might be attributed to good conductivity of Co_(1-x)S, mesoporous nanostructure, and synergistic effect of Co_(1-x)S encapsulated within porous carbon. This work provides a novel strategy for designing and synthesizing advanced composite