Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru...Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.展开更多
Potassium metal battery is a promising alternative to Li-ion battery for large-scale energy storage due to the abundant potassium resources and high energy density.However,it suffers from rapid capacity fading and saf...Potassium metal battery is a promising alternative to Li-ion battery for large-scale energy storage due to the abundant potassium resources and high energy density.However,it suffers from rapid capacity fading and safety issues due to the uncontrolled dendrite growth.Herein,we design a fluorine-free ultra-low concentration electrolyte(ULCE)with the super bulky[BPh_(4)]^(−) anions for stable potassium metal battery.In this special electrolyte,the migration rate of K+in the electrolyte is about six times faster than that of the[BPh_(4)]^(−) anions because of the super bulky structure of the[BPh_(4)]^(−) anions,thus resulting in a high K^(+)transference number of 0.76.This high transference number can effectively make up for the deficiency of K^(+)in ULCE for ensuring the normal operation of the potassium metal battery.In addition,the improved transference number can also promote the uniform distribution of K^(+)flux on the surface of the K metal anode,resulting in uniform K deposition.As a result,this electrolyte achieves a high K plating/stripping Coulombic efficiency of 92.6%over 200 cycles and a stable discharging/charging for 100 cycles under the full battery configuration(K used as the anode and perylene-3,4,9,10-tetracarboxylic dianhydride used as the cathode).展开更多
基金supported by the National Natural Science Foundation of China(Grant nos.51402324,51402325,51302281)
文摘Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.
基金supported by the National Natural Science Foundation of China(Nos.21975124 and 52173173)supported by 21C Innovation Laboratory,Contemporary Amperex Technology Ltd(No.21C-OP-202008).
文摘Potassium metal battery is a promising alternative to Li-ion battery for large-scale energy storage due to the abundant potassium resources and high energy density.However,it suffers from rapid capacity fading and safety issues due to the uncontrolled dendrite growth.Herein,we design a fluorine-free ultra-low concentration electrolyte(ULCE)with the super bulky[BPh_(4)]^(−) anions for stable potassium metal battery.In this special electrolyte,the migration rate of K+in the electrolyte is about six times faster than that of the[BPh_(4)]^(−) anions because of the super bulky structure of the[BPh_(4)]^(−) anions,thus resulting in a high K^(+)transference number of 0.76.This high transference number can effectively make up for the deficiency of K^(+)in ULCE for ensuring the normal operation of the potassium metal battery.In addition,the improved transference number can also promote the uniform distribution of K^(+)flux on the surface of the K metal anode,resulting in uniform K deposition.As a result,this electrolyte achieves a high K plating/stripping Coulombic efficiency of 92.6%over 200 cycles and a stable discharging/charging for 100 cycles under the full battery configuration(K used as the anode and perylene-3,4,9,10-tetracarboxylic dianhydride used as the cathode).