期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Soil and microbial C:N:P stoichiometries play vital roles in regulating P transformation in agricultural ecosystems:A review
1
作者 Guanglei CHEN Jiahui YUAN +4 位作者 Shenqiang wang Yuting LIANG dengjun wang Yiyong ZHU Yu wang 《Pedosphere》 SCIE CAS CSCD 2024年第1期44-51,共8页
Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to ach... Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to achieve high crop yields. However, P is readily fixed by soil particles, leading to low P use efficiency. Therefore, understanding the role of carbon:nitrogen:P stoichiometries of soil and microorganisms in soil P transformation is of great significance for P management in agriculture. This paper provides a comprehensive review of the recent research on stoichiometry effect on soil P transformation in agricultural ecosystems. Soil microorganisms play an important role in the transformation of soil non-labile inorganic P to microbial biomass P by regulating microbial biomass stoichiometry. They also mobilize soil unavailable organic P into available P by changing ecoenzyme stoichiometry. Organic materials, such as manure and straw, play an important role in promoting the transformation of insoluble P into available P as well. Additionally, periphytic biofilms can reduce P loss from rice field ecosystems. Agricultural stoichiometries are different from those of natural ecosystems and thereby should receive more attention due to the influences of anthropogenic factors. Therefore, it is necessary to conduct further stoichiometry research on the soil biochemical mechanisms underlying P transformation in agricultural ecosystems. In conclusion, understanding stoichiometry impact on soil P transformation is crucial for P management in agricultural ecosystems. 展开更多
关键词 ecoenzyme microbial biomass microbial community MICROORGANISM P availability periphytic biofilm soil P transformation
原文传递
Quantification of the redox properties of microplastics and their effect on arsenite oxidation
2
作者 Lin Chen dengjun wang +5 位作者 Tianran Sun Tingting Fan Song Wu Guodong Fang Min Yang Dongmei Zhou 《Fundamental Research》 CAS CSCD 2023年第5期777-785,共9页
Microplastics have attracted global concern.The environmental-weathering processes control their fate,transport,transformation,and toxicity to wildlife and human health,but their impacts on biogeochemical redox proces... Microplastics have attracted global concern.The environmental-weathering processes control their fate,transport,transformation,and toxicity to wildlife and human health,but their impacts on biogeochemical redox processes remain largely unknown.Herein,multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics.The spectroscopic results indicated that weathering of phenol-formaldehyde resins(PFs)by hydrogen peroxide(H2O2)led to a slight decrease in the content of phenol functional groups,accompanied by an increase in semiquinone radicals,quinone,and carboxylic groups.Electrochemical and wet-chemistry quantifications,coupled with microbial-chemical characterizations,demonstrated that the PFs exhibited appreciable electron-donating capacity(0.264-1.15 mmol e-g^(-1))and electron-accepting capacity(0.120-0.300 mmol e-g^(-1)).Specifically,the phenol groups and semiquinone radicals were responsible for the electron-donating capacity,whereas the quinone groups dominated the electron-accepting capacity.The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and-accepting reactions.More importantly,the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation.In addition to the H2O2-weathered PFs,the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity.This study reports important redox properties of microplastics and their effect in mediating contaminant transformation.These findings will help to better understand the fate,transformation,and biogeochemical roles of microplastics on element cycling and contaminant fate. 展开更多
关键词 Microplastics WEATHERING Redox property Semiquinone radicals Electron-donating and-accepting capacity Arsenite oxidation
原文传递
Long-term biochar addition significantly decreases rice rhizosphere available phosphorus and its release risk to the environment 被引量:1
3
作者 Hao Chen Jiahui Yuan +6 位作者 Guanglei Chen Xu Zhao Shenqiang wang dengjun wang Lei wang Yujun wang Yu wang 《Biochar》 SCIE 2022年第1期281-295,共15页
Phosphorus(P)availability,diffusion,and resupply processes can be altered by biochar addition in flooded rice rhizosphere,which controls the risk of P release to the environment.However,there are few in-situ investiga... Phosphorus(P)availability,diffusion,and resupply processes can be altered by biochar addition in flooded rice rhizosphere,which controls the risk of P release to the environment.However,there are few in-situ investigations of these rhizospheric processes and effects.To explore the effects of biochar addition on soil P availability,high-resolution dialysis(HR-Peeper),diffusive gradients in thin films(DGT),and zymography techniques were used to provide direct evidence in the rice rhizosphere at the sub-millimeter scale.Long-term(9-years)field and greenhouse pot experiments demonstrated that biochar addition notably decreased the soluble/labile P and Fe concentrations in rice rhizosphere(vs.no biochar addition;CK)based on the results of Peeper,DGT,and two-dimensional imaging of labile P fluxes.DGT-induced fluxes in the soil/sediment(DIFS)model and sediment P release risk index(SPRRI)further indicated that biochar addition decreased the diffusion and resupply capacity of P from soil solid to the solution,thereby decreasing P release risk to the environment.These processes were dominated by Fe redox cycling and the hydrolysis of Al(hydro)oxides that greatly increased the unavailable P(Ca-P and residual-P).Additionally,greenhouse pot experiments(without additional biochar)showed that the previous long-term biochar addition significantly increased soil phosphatase activity,due to an adaptive-enhancing response to P decrease in the rhizosphere zone.The in-situ study on the biogeochemical reactions of P in the rice rhizosphere may provide a new and direct perspective to better evaluate the biochar addition and potential benefits to agricultural soils. 展开更多
关键词 BIOCHAR Rice rhizosphere Phosphorus availability DGT DIFS SPRRI
原文传递
Interactions of extracellular DNA with aromatized biochar and protection against degradation by DNaseⅠ
4
作者 Jing Fang Liang Jin +2 位作者 Qingkang Meng dengjun wang Daohui Lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第3期205-216,共12页
With increasing environmental application,biochar(BC)will inevitably interact with and impact environmental behaviors of widely distributed extracellular DNA(eDNA),which however still remains to be studied.Herein,the ... With increasing environmental application,biochar(BC)will inevitably interact with and impact environmental behaviors of widely distributed extracellular DNA(eDNA),which however still remains to be studied.Herein,the adsorption/desorption and the degradation by nucleases of eDNA on three aromatized BCs pyrolyzed at 700℃were firstly investigated.The results show that the eDNA was irreversibly adsorbed by aromatized BCs and the pseudo-second-order and Freundlich models accurately described the adsorption process.Increasing solution ionic strength or decreasing pH below 5.0 significantly increased the eDNA adsorption on BCs.However,increasing pH from 5.0 to 10.0 faintly decreased eDNA adsorption.Electrostatic interaction,Ca ion bridge interaction,andπ-πinteraction between eDNA and BC could dominate the eDNA adsorption,while ligand exchange and hydrophobic interactions were minor contributors.The presence of BCs provided a certain protection to eDNA against degradation by DNase I.BC-bound eDNA could be partly degraded by nuclease,while BC-bound nuclease completely lost its degradability.These findings are of fundamental significance for the potential application of biochar in eDNA dissemination management and evaluating the environmental fate of eDNA. 展开更多
关键词 Aromatized biochar Extracellular DNA SORPTION DESORPTION Enzymatic degradation
原文传递
A mechanistic study of ciprofloxacin adsorption by goethite in the presence of silver and titanium dioxide nanoparticles
5
作者 Jie Tang Yun wang +5 位作者 Qiang Xue Fei Liu Kenneth CCarroll Xiaohua Lu Taogeng Zhou dengjun wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第8期46-56,共11页
The adsorption behaviors of ciprofloxacin(CIP),a fluoroquinolone antibiotic,onto goethite(Gt)in the presence of silver and titanium dioxide nanoparticles(AgNPs and TiO_(2)NPs)were investigated.Results showed that CIP ... The adsorption behaviors of ciprofloxacin(CIP),a fluoroquinolone antibiotic,onto goethite(Gt)in the presence of silver and titanium dioxide nanoparticles(AgNPs and TiO_(2)NPs)were investigated.Results showed that CIP adsorption kinetics in Gt with or without NPs both followed the pseudo-second-order kinetic model.The presence of AgNPs or TiO_(2)NPs inhibited the adsorption of CIP by Gt.The amount of inhibition of CIP sorption due to AgNPs was decreased with an increase of solution pH from 5.0 to 9.0.In contrast,in the presence of TiO_(2)NPs,CIP adsorption by Gt was almost unchanged at pHs of 5.0∼6.5 but was decreased with an increase of pH from 6.5 to 9.0.The mechanisms of AgNPs and TiO_(2)NPs in inhibiting CIP adsorption by Gt were different,which was attributed to citrate coating of AgNPs resulting in competition with CIP for adsorption sites on Gt,while TiO_(2)NPs could compete with Gt for CIP adsorption.Additionally,CIP was adsorbed by Gt or TiO_(2)NPs through a tridentate complex involving the bidentate inner-sphere coordination of the deprotonated carboxylic group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring.These findings advance our understanding of the environmental behavior and fate of fluoroquinolone antibiotics in the presence of NPs. 展开更多
关键词 CIPROFLOXACIN GOETHITE Silver nanoparticles Titanium dioxide nanoparticles ADSORPTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部