Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the ...Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H_(2)S gas,which greatly limits mass-production/practical application of sulfide SEs and ASSBs.This review is designed to serve as an all-inclusive handbook for studying this critical issue.First,the research history and milestone breakthroughs of this field are reviewed,and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far,including the random network theory of glasses,hard and soft acids and bases(HSAB)theory,thermodynamic analysis and kinetics of interfacial reactions.Moreover,the characterization of air stability is reviewed from the perspectives of H2S generation,morphology evolution,mass change,component/structure variations and electrochemical performance.Furthermore,effective strategies for improving the air stabilities of sulfide SEs are highlighted,including H_(2)S absorbents,elemental substitution,design of new materials,surface engineering and sulfide-polymer composite electrolytes.Finally,future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs.展开更多
Sulfide-based all-solid-state lithium-ion batteries(ASSLIBs)are one of the most promising energy storage technologies due to their high safety and ionic conductivity.To achieve greater energy density,a Ni-rich layered...Sulfide-based all-solid-state lithium-ion batteries(ASSLIBs)are one of the most promising energy storage technologies due to their high safety and ionic conductivity.To achieve greater energy density,a Ni-rich layered oxide LiNi_(x)Co_(y)M_(1-x-y)O_(2)(NCM,MMn/Al,x≥0.6)is desirable due to its relatively high voltage and large capacity.However,interfacial side reactions between the NCM and sulfide solid electrolytes lead to undesirable interfacial passivation layers and low ionic conductivity,thereby degrading the electrochemical performance of NCM sulfide all-solid-state batteries.Herein,a time-/cost-effective sulfidation strategy is exploited to sulfidize a Ni-rich NCM_(88) cathode in a mixed gas atmosphere of N_(2) and CS_(2).A new type of cathode(NCM88-S)with an ultrathin(∼2nm)surface layer is obtained,which significantly reduces the interfacial side reactions/resistance and improves the interfacial stability.The resulting NCM_(88)-S/Li_(6)PS_(5)Cl/Li_(4)Ti_(5)O_(12) ASSLIB exhibits superior performance,including a high discharge specific capacity(200.7 mAh g−1)close to that of liquid batteries,excellent cycling performance(a capacity retention of 87%after 500 cycles),and satisfactory rate performance(158.3 mAh g^(−1) at 1C).展开更多
基金supported by the Key Program-Automobile Joint Fund of the National Natural Science Foundation of China(Grant No.U1964205)the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)+4 种基金the General Program of the National Natural Science Foundation of China(Grant No.51972334)the General Program of the National Natural Science Foundation of Beijing(Grant No.2202058)the Cultivation Project of Leading Innovative Experts in Changzhou City(CQ20210003)the National Overseas High-Level Expert Recruitment Program(Grant No.E1JF021E11)the Talent Program of the Chinese Academy of Sciences,“Scientist Studio Program Funding”from the Yangtze River Delta Physics Research Center and the Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIES-SS0001).
文摘Sulfides have been widely acknowledged as one of the most promising solid electrolytes(SEs)for all-solid-state batteries(ASSBs)due to their superior ionic conductivity and favourable mechanical properties.However,the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H_(2)S gas,which greatly limits mass-production/practical application of sulfide SEs and ASSBs.This review is designed to serve as an all-inclusive handbook for studying this critical issue.First,the research history and milestone breakthroughs of this field are reviewed,and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far,including the random network theory of glasses,hard and soft acids and bases(HSAB)theory,thermodynamic analysis and kinetics of interfacial reactions.Moreover,the characterization of air stability is reviewed from the perspectives of H2S generation,morphology evolution,mass change,component/structure variations and electrochemical performance.Furthermore,effective strategies for improving the air stabilities of sulfide SEs are highlighted,including H_(2)S absorbents,elemental substitution,design of new materials,surface engineering and sulfide-polymer composite electrolytes.Finally,future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs.
基金supported by Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205),Key R&D Project funded by Department of Science and Technology of Jiangsu Province(Grant No.BE2020003),General Program of National Natural Science Foundation of China(Grant No.51972334),General Program of National Natural Science Foundation of Beijing(Grant No.2202058),Cultivation project of leading innovative experts in Changzhou City(CQ20210003),National Overseas High-level Expert recruitment Program(Grant No.E1JF021E11),Talent Program of Chinese Academy of Sciences,“Scientist Studio Program Funding”from Yangtze River Delta Physics Research Center and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIES-SS0001).Science and Technology Research Institute of China Three Gorges Corporation(Grant 202103402).
文摘Sulfide-based all-solid-state lithium-ion batteries(ASSLIBs)are one of the most promising energy storage technologies due to their high safety and ionic conductivity.To achieve greater energy density,a Ni-rich layered oxide LiNi_(x)Co_(y)M_(1-x-y)O_(2)(NCM,MMn/Al,x≥0.6)is desirable due to its relatively high voltage and large capacity.However,interfacial side reactions between the NCM and sulfide solid electrolytes lead to undesirable interfacial passivation layers and low ionic conductivity,thereby degrading the electrochemical performance of NCM sulfide all-solid-state batteries.Herein,a time-/cost-effective sulfidation strategy is exploited to sulfidize a Ni-rich NCM_(88) cathode in a mixed gas atmosphere of N_(2) and CS_(2).A new type of cathode(NCM88-S)with an ultrathin(∼2nm)surface layer is obtained,which significantly reduces the interfacial side reactions/resistance and improves the interfacial stability.The resulting NCM_(88)-S/Li_(6)PS_(5)Cl/Li_(4)Ti_(5)O_(12) ASSLIB exhibits superior performance,including a high discharge specific capacity(200.7 mAh g−1)close to that of liquid batteries,excellent cycling performance(a capacity retention of 87%after 500 cycles),and satisfactory rate performance(158.3 mAh g^(−1) at 1C).