Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manu...Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manufacturing. Based on the matrix notch filter and fast wavelet packet decomposition, this paper presents a novel pre-generated matrix-based real-time chatter monitoring method for robotic drilling. Taking vibration characteristics of robotic drilling into account, the matrix notch filter is designed to eliminate the interference of spindle-related components on the measured vibration signal. Then, the fast wavelet packet decomposition is presented to decompose the filtered signal into several equidistant frequency bands, and the energy of each sub-band is obtained. Finally, the energy entropy which characterizes inhomogeneity of energy distribution is utilized as the feature to recognize chatter on-line, and the effectiveness of the presented algorithm is validated by extensive experimental data. The results show that the proposed algorithm can effectively detect chatter before it is fully developed. Moreover, since both filtering and decomposition of signal are implemented by the pre-generated matrices, calculation for an energy entropy of vibration signal with 512 samples takes only about 0.690 ms. Consequently, the proposed method achieves real-time chatter monitoring for robotic drilling, which is essential for subsequent chatter suppression.展开更多
基金supported by the National Key R&D Program of China (No. 2017YFB1302601 and 2018YFB1702503)
文摘Currently, due to the detrimental effects on surface finish and machining system, chatter has been one crucial factor restricting robotic drilling operations, which improve both quality and efficiency of aviation manufacturing. Based on the matrix notch filter and fast wavelet packet decomposition, this paper presents a novel pre-generated matrix-based real-time chatter monitoring method for robotic drilling. Taking vibration characteristics of robotic drilling into account, the matrix notch filter is designed to eliminate the interference of spindle-related components on the measured vibration signal. Then, the fast wavelet packet decomposition is presented to decompose the filtered signal into several equidistant frequency bands, and the energy of each sub-band is obtained. Finally, the energy entropy which characterizes inhomogeneity of energy distribution is utilized as the feature to recognize chatter on-line, and the effectiveness of the presented algorithm is validated by extensive experimental data. The results show that the proposed algorithm can effectively detect chatter before it is fully developed. Moreover, since both filtering and decomposition of signal are implemented by the pre-generated matrices, calculation for an energy entropy of vibration signal with 512 samples takes only about 0.690 ms. Consequently, the proposed method achieves real-time chatter monitoring for robotic drilling, which is essential for subsequent chatter suppression.