This work presents an extreme biomimetics route for the creation of nano- structured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous tem...This work presents an extreme biomimetics route for the creation of nano- structured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide- chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150-300 nm) size distri- bution and predominantly hexagonal phase, demonstrating the chitin template's control over the crystal morphology. The formed GeO2-chitin composite showed several specific physical properties, such as a striking enhancement in photo- luminescence exceeding values previously reported in GeOR-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.展开更多
文摘This work presents an extreme biomimetics route for the creation of nano- structured biocomposites utilizing a chitinous template of poriferan origin. The specific thermal stability of the nanostructured chitinous template allowed for the formation under hydrothermal conditions of a novel germanium oxide- chitin composite with a defined nanoscale structure. Using a variety of analytical techniques (FTIR, Raman, energy dispersive X-ray (EDX), near-edge X-ray absorption fine structure (NEXAFS), and photoluminescence (PL) spectroscopy, EDS-mapping, selected area for the electron diffraction pattern (SAEDP), and transmission electron microscopy (TEM)), we showed that this bioorganic scaffold induces the growth of GeO2 nanocrystals with a narrow (150-300 nm) size distri- bution and predominantly hexagonal phase, demonstrating the chitin template's control over the crystal morphology. The formed GeO2-chitin composite showed several specific physical properties, such as a striking enhancement in photo- luminescence exceeding values previously reported in GeOR-based biomaterials. These data demonstrate the potential of extreme biomimetics for developing new-generation nanostructured materials.