Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challe...Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challenges that MWN has to face. Software-defined network is expected as a promising way for future network and has captured growing attention. Network virtualization is an essential feature in software-defined wireless network(SDWN), and it brings two new entities, physical networks and virtual networks. Accordingly, efficiently assigning spectrum resource to virtual networks is one of the fundamental problems in SDWN. Directly orienting towards the spectrum resource allocation problem, firstly, the fluctuation features of virtual network requirements in SDWN are researched, and the opportunistic spectrum sharing method is introduced to SDWN. Then, the problem is proved as NP-hardness. After that, a dynamic programming and graph theory based spectrum sharing algorithm is proposed.Simulations demonstrate that the opportunistic spectrum sharing method conspicuously improves the system performance up to around 20%–30% in SDWN, and the proposed algorithm achieves more efficient performance.展开更多
The explosive development of mobile communications and networking has led to the creation of an extremely complex system,which is difficult to manage.Hence,we propose an AI-powered network framework that uses AI techn...The explosive development of mobile communications and networking has led to the creation of an extremely complex system,which is difficult to manage.Hence,we propose an AI-powered network framework that uses AI technologies to operate the network automatically.However,due to the separation between different mobile network operators,data barriers between diverse operators become bottlenecks to exploit the full power of AI.In this paper,we establish a mutual trust data sharing framework to break these data barriers.The framework is based on the distributed and temper-proof attributes of blockchain.We implement a prototype based on Hyperledger Fabric.The proposed system combines supervision and fine-grained data access control based on smart contracts,which provides a secure and trustless environment for data sharing.We further compare our system with existing data sharing schemes,and we find that our system provides a better functionality.展开更多
基金supported by the National Natural Science Foundation of China(6102100161133015+4 种基金61171065)the National Natural Science Foundation of China(973 Program)(2013CB329001)the National High Technology ResearchDevelopment Program(863 Program)(2013AA0106052013AA013500)
文摘Over the past few decades, the world has witnessed a rapid growth in mobile and wireless networks(MWNs) which significantly change human life. However, proliferating mobile demands lead to several intractable challenges that MWN has to face. Software-defined network is expected as a promising way for future network and has captured growing attention. Network virtualization is an essential feature in software-defined wireless network(SDWN), and it brings two new entities, physical networks and virtual networks. Accordingly, efficiently assigning spectrum resource to virtual networks is one of the fundamental problems in SDWN. Directly orienting towards the spectrum resource allocation problem, firstly, the fluctuation features of virtual network requirements in SDWN are researched, and the opportunistic spectrum sharing method is introduced to SDWN. Then, the problem is proved as NP-hardness. After that, a dynamic programming and graph theory based spectrum sharing algorithm is proposed.Simulations demonstrate that the opportunistic spectrum sharing method conspicuously improves the system performance up to around 20%–30% in SDWN, and the proposed algorithm achieves more efficient performance.
文摘The explosive development of mobile communications and networking has led to the creation of an extremely complex system,which is difficult to manage.Hence,we propose an AI-powered network framework that uses AI technologies to operate the network automatically.However,due to the separation between different mobile network operators,data barriers between diverse operators become bottlenecks to exploit the full power of AI.In this paper,we establish a mutual trust data sharing framework to break these data barriers.The framework is based on the distributed and temper-proof attributes of blockchain.We implement a prototype based on Hyperledger Fabric.The proposed system combines supervision and fine-grained data access control based on smart contracts,which provides a secure and trustless environment for data sharing.We further compare our system with existing data sharing schemes,and we find that our system provides a better functionality.