期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H_(2)O_(2)in acidic media 被引量:1
1
作者 Jingxin Xie Lijie Zhong +6 位作者 Xin Yang dequan he Kanglong Lin Xiaoxia Chen Huan Wang Shiyu Gan Li Niu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期475-481,共7页
Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing hi... Electrosynthesis of hydrogen peroxide(H2O2)is an on-site method that enables independent distribution applications in many fields due to its small-scale and sustainable features.The crucial point remains developing highly active,selective and cost-effective electrocatalysts.The electrosynthesis of H2O2 in acidic media is more practical owing to its stability and no need for further purification.We herein report a phosphorus and selenium tuning Co-based non-precious catalyst(CoPSe)toward two-electron oxygen reduction reaction(2e–ORR)to produce H2O2 in acidic media.The starting point of using both P and Se is finding a balance between strong ORR activity of CoSe and weak activity of CoP.The results demonstrated that the CoPSe catalyst exhibited the optimized 2e–ORR activity compared with CoP and CoSe.It disclosed an onset potential of 0.68 V and the H2O2 selectivity 76%-85%in a wide potential range(0–0.5 V).Notably,the CoPSe catalyst overcomes a significant challenge of a narrow-range selectivity for transitionmetal based 2e–ORR catalysts.Finally,combining with electro-Fenton reaction,an on-site system was constructed for efficient degradation of organic pollutants.This work provides a promising non-precious Co-based electrocatalyst for the electrosynthesis of H2O2 in acidic media. 展开更多
关键词 Oxygen reduction reaction Electrochemical H2O2 production ELECTROCATALYSIS Non-precious electrocatalyst Acidic media
原文传递
Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H_(2)O_(2) electrosynthesis in acidic media 被引量:1
2
作者 Xiaoqing Cui Lijie Zhong +6 位作者 Xu Zhao Jingxin Xie dequan he Xin Yang Kanglong Lin Huan Wang Li Niu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期263-268,共6页
Electrocatalytic production of hydrogen peroxide(H_(2)O_(2))by two-electron oxygen reduction reaction(2e^(-)ORR)under acidic condition has been considered to have great application value.Co nanoparticles(CoNPs)coupled... Electrocatalytic production of hydrogen peroxide(H_(2)O_(2))by two-electron oxygen reduction reaction(2e^(-)ORR)under acidic condition has been considered to have great application value.Co nanoparticles(CoNPs)coupled with N-doped carbon are a class of potential electrocatalysts.The effective strategies to further enhance their performances are to improve the active sites and stability.Herein,the material containing ultrafine CoNPs confined in a nitrogen-doped carbon matrix(NC@CoNPs)was synthesized by pyrolyzing corresponding precursors,which was obtained through regulating the topological structure of ZIF-67/ZIF-8 with dopamine(DA).The DA self-polymerization process induced the formation of CoNPs with smaller sizes and formed polydopamine film decreased the detachment of CoNPs from the catalyst.High density of Co-N_(x) active sites and defective sites could be identified on NC@CoNPs,leading to high activity and H_(2)O_(2) selectivity,with an onset potential of 0.57 V(vs.RHE)and∼90%selectivity in a wide potential range.An on-site electrochemical removal of organic pollutant was achieved rapidly through an electro-Fenton process,demonstrating its great promise for on-site water treatment application. 展开更多
关键词 Oxygen reduction reaction H_(2)O_(2)production Confined Co nanoparticles ELECTROCATALYSIS Acidic media
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部