期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fourier transform of anisotropic mixed-norm Hardy spaces 被引量:1
1
作者 Long HUANG der-chen chang Dachun YANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第1期119-139,共21页
Let a:=(a1,…,an)∈[1,∞)n,p:=(p1,…,pn)∈(0,1]n,Hpa(R^(n))be the anisotropic mixed-norm Hardy space associated with adefined via the radial maximal function,and let f belong to the Hardy space Hpa(R^(n)).In this arti... Let a:=(a1,…,an)∈[1,∞)n,p:=(p1,…,pn)∈(0,1]n,Hpa(R^(n))be the anisotropic mixed-norm Hardy space associated with adefined via the radial maximal function,and let f belong to the Hardy space Hpa(R^(n)).In this article,we show that the Fourier transform fcoincides with a continuous function g onℝn in the sense of tempered distributions and,moreover,this continuous function g,multiplied by a step function associated with a,can be pointwisely controlled by a constant multiple of the Hardy space norm of f.These proofs are achieved via the known atomic characterization of Hpa(R^(n))and the establishment of two uniform estimates on anisotropic mixed-norm atoms.As applications,we also conclude a higher order convergence of the continuous function gat the origin.Finally,a variant of the Hardy-Littlewood inequality in the anisotropic mixed-norm Hardy space setting is also obtained.All these results are a natural generalization of the well-known corresponding conclusions of the classical Hardy spaces Hp(R^(n))with p∈0,1],and are even new for isotropic mixed-norm Hardy spaces on∈n. 展开更多
关键词 Anisotropic(mixed-norm)Hardy space Fourier transform Hardy-Littlewood inequality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部