期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Whole‑genome transcriptome and DNA methylation dynamics of pre‑implantation embryos reveal progression of embryonic genome activation in buffaloes
1
作者 Penghui Fu Du Zhang +8 位作者 Chunyan Yang Xiang Yuan Xier Luo Haiying Zheng Yanfei Deng Qingyou Liu Kuiqing Cui Fei Gao deshun shi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2411-2427,共17页
Background During mammalian pre-implantation embryonic development(PED),the process of maternal-to-zygote transition(MZT)is well orchestrated by epigenetic modification and gene sequential expression,and it is related... Background During mammalian pre-implantation embryonic development(PED),the process of maternal-to-zygote transition(MZT)is well orchestrated by epigenetic modification and gene sequential expression,and it is related to the embryonic genome activation(EGA).During MZT,the embryos are sensitive to the environment and easy to arrest at this stage in vitro.However,the timing and regulation mechanism of EGA in buffaloes remain obscure.Results Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing(WGBS)to draw landscapes of transcription and DNA-methylation.Four typical developmental steps were classified during buffalo PED.Buffalo major EGA was identified at the 16-cell stage by the comprehensive analy-sis of gene expression and DNA methylation dynamics.By weighted gene co-expression network analysis,stage-spe-cific modules were identified during buffalo maternal-to-zygotic transition,and key signaling pathways and biological process events were further revealed.Programmed and continuous activation of these pathways was necessary for success of buffalo EGA.In addition,the hub gene,CDK1,was identified to play a critical role in buffalo EGA.Conclusions Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT.It will lay a foundation for improving the in vitro development of buffalo embryos. 展开更多
关键词 BUFFALO DNA methylome Embryonic genome activation Maternal-to-zygote transition TRANSCRIPTOME
下载PDF
Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection
2
作者 Fanli Meng Hui Li +3 位作者 Xiaoli Wang Guangsheng Qin Bj?rn Oback deshun shi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2015年第4期395-401,共7页
Background: Cytoplasmic injection of exogenous DNA into zygotes is a promising technique to generate transgenic livestock. However, it is still relatively inefficient and has not yet been demonstrated to work in buff... Background: Cytoplasmic injection of exogenous DNA into zygotes is a promising technique to generate transgenic livestock. However, it is still relatively inefficient and has not yet been demonstrated to work in buffalo. We sought to improve two key technical parameters of the procedure, namely i) how much linear DNA to inject and ii) when to inject it. For this, we introduced a constitutively expressed enhanced green fluorescent protein (EGFP) plasmid into buffalo zygotes. Results: First, we found that the proportion of EGFP-expressing blastocysts derived from zygotes injected with 20 or 50 ng/pL DNA was significantly higher than from those injected with 5 pg/mL. However, 50 ng/pL exogenous DNA compromised blastocyst development compared to non-injected IVF controls. Therefore the highest net yield of EGFP-positive blastocysts was achieved at 20 ng/pL DNA. Second, zygotes injected early (7-8 h post-insemination [hpi]) developed better than those injected at mid (12-13 hpi) or late (18-19 hpi) time points. Blastocysts derived from early injections were also more frequently EGFP-positive. As a consequence, the net yield of EGFP-expressing blastocysts was more than doubled using early vs late injections (16.4 % vs 7.7 %). With respect to blastocyst quality, we found no significant difference in cell numbers of EGFP-positive blastocysts vs non-injected blastocysts. Following embryo transfer of six EGFP-positive blastocysts into four recipient animals, two viable buffalo calves were born. Biopsied ear tissues from both buffalo calves were analyzed for transgene presence and expression by Southern blot, PCR and confocal laser scanning microscopy, respectively. This confirmed that both calves were transgenic. Conclusions: Our cytoplasmic injection protocol improved generation of transgenic embryos and resulted in the first transgenic buffalo calves produced by this method. 展开更多
关键词 BUFFALO Cytoplasmic injection Plasmid TRANSGENIC ZYGOTE
下载PDF
An Insight on Small Molecule Induced Foot-Print Free Naive Pluripotent Stem Cells in Livestock
3
作者 Mengmei Li Lanyu Li +4 位作者 Jun Zhang Vinod Verma Qingyou Liu deshun shi Ben Huang 《Stem Cell Discovery》 2015年第1期1-9,共9页
Bona fide embryonic stem cell (ESC) lines from livestock species have been challenging to derive and maintain, contrasting mouse and human ESCs. However, induced pluripotent stem cells (iPSC) generated by reprogrammin... Bona fide embryonic stem cell (ESC) lines from livestock species have been challenging to derive and maintain, contrasting mouse and human ESCs. However, induced pluripotent stem cells (iPSC) generated by reprogramming somatic cells tender an option, as they display characteristic features of ESC. The comprehension that induced pluripotent stem cells (iPSC) could be created with in no time also holds the potential of allowing pluripotent cells to be derived from animal models vital in biomedical research. Endeavors to produce bona fide pluripotent stem cells (PSC) from livestock have been going on for more than two decades. But, attempts to derive bona fide livestock iPS cells have met with limited success. Recently it’s been reported that small molecules can augment reprogramming efficiency and may be used to substitute few or all transcription factors used for reprogramming. It is assumed that the reprogramming factors are conserved among species, and this small molecule reprogramming approach will probably apply to livestock species as well. So this review will focus mainly on the accomplishments of small molecules on accelerating cell reprogramming and obtaining naive pluripotency, and raise a new insight on, exogenous genes free, livestock naive iPSC generation with a new bullet, small molecule. 展开更多
关键词 Small MOLECULE Foot-Print Free NAIVE PLURIPOTENT Stem Cell LIVESTOCK
下载PDF
Individual variation in buffalo somatic cell cloning efficiency is related to glycolytic metabolism
4
作者 Chan Luo Zhiqiang Wang +5 位作者 Jinling Wang Feng Yun Fenghua Lu Jiayuan Fu Qingyou Liu deshun shi 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第10期2076-2092,共17页
Mammalian individuals differ in their somatic cell cloning efficiency,but the mechanisms leading to this variation is poorly understood.Here we found that high cloning efficiency buffalo fetal fibroblasts(BFFs)display... Mammalian individuals differ in their somatic cell cloning efficiency,but the mechanisms leading to this variation is poorly understood.Here we found that high cloning efficiency buffalo fetal fibroblasts(BFFs)displayed robust energy metabolism,looser chromatin structure,high H3 K9 acetylation and low heterochromatin protein 1α(HP1α)expression.High cloning efficiency BFFs had more H3 K9 ac regions near to the upstream of glycolysis genes by Ch IP-seq,and involved more openness loci related to glycolysis genes through ATAC-seq.The expression of these glycolysis genes was also found to be higher in high cloning efficiency BFFs by q RT-PCR.Two key enzymes of glycolysis,PDKs and LDH,were confirmed to be associated with histone acetylation and chromatin openness of BFFs.Treatment of low cloning efficiency BFFs with PS48(activator of PDK1)resulted in an increase in the intracellular lactate production and H3 K9 acetylation,decrease in histone deacetylase activity and HP1αexpression,less condensed chromatin structure and more cloning embryos developing to blastocysts.These results indicate that the cloning efficiency of buffalo somatic cells is associated with their glycolytic metabolism and chromatin structure,and can be improved by increasing glycolytic metabolism. 展开更多
关键词 BUFFALO cloning efficiency chromatin openness histone acetylation glycolytic metabolism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部