Optoelectronic properties of MoSe2 are modulated by controlled annealing in air.Characterizations by Raman spectroscopy and XPS demonstrate the introduction of oxygen defects.Considerable increase in electron and hole...Optoelectronic properties of MoSe2 are modulated by controlled annealing in air.Characterizations by Raman spectroscopy and XPS demonstrate the introduction of oxygen defects.Considerable increase in electron and hole mobilities reveals the highly improved electron and hole transport.Furthermore,the photocurrent is enhanced by nearly four orders of magnitudes under 7 nW laser exposure after annealing.The remarkable enhancement in the photoresponse is attributed to an increase in hole trapping centers and a reduction in resistance.Furthermore,the annealed photodetector shows a fast time response on the order of 10 ms and responsivity of 3×10^(4) A/W.展开更多
To obtain various Ni/Mn orderings,we use a low-temperature synthesized method to modulate the Ni/Mn ordering of the ferromagnetic-ferroelastic La2NiMnO6 compound,and the Ni/Mn ordering is estimated by the low-temperat...To obtain various Ni/Mn orderings,we use a low-temperature synthesized method to modulate the Ni/Mn ordering of the ferromagnetic-ferroelastic La2NiMnO6 compound,and the Ni/Mn ordering is estimated by the low-temperature saturation magnetism.The microstructures,crystal structures and magnetic properties are investigated,and the Landau theory are used to describe the form and magnitude of the coupling effects between Ni/Mn ordering and magnetic order parameters.It is predicted that the Ni/Mn ordering would be a strong coupling effect with the Curie transition temperatures if the La2NiMnO6 sample stoichiometry is close.展开更多
Surface charge transfer doping has been widely utilized to tune the electronic and optical properties of semiconductor photodetectors based on low-dimensional materials.Although many studies have been conducted on the...Surface charge transfer doping has been widely utilized to tune the electronic and optical properties of semiconductor photodetectors based on low-dimensional materials.Although many studies have been conducted on the performance(response time,responsivity,etc.)of doped photodetectors and their mechanisms,they merely examined a specific thickness and did not systematically explore the dependence of doping effects on the number of layers.This work performs a series of investigations on ReS_(2)photodetectors with different numbers of layers and demonstrates that the p-dopant tetrafluorotetracyanoquinodimethane(F_(4)-TCNQ)converts the deep trap states into recombination centers for few-layer ReS_(2)and induces a vertical p-n junction for thicker ReS_(2).A response time of 200 ms is observed in the decorated 2-layer ReS_(2)photodetector,more than two orders of magnitude faster than the response of the pristine photodetector,due to the disappearance of deep trap states.A current rectification ratio of 30 in the F_(4)-TCNQ-decorated sandwiched ReS_(2)device demonstrates the formation of a vertical p-n junction in a thicker ReS_(2)device.The responsivity is as high as 2,000 A/W owing to the strong carrier separation of the p-n junction.Different thicknesses of ReS_(2)enable switching of the prominent operating mechanism between transforming deep trap states into recombination centers and forming a vertical p-n junction.The thicknessdependent doping effect of a two-dimensional material serves as a new mechanism and provides a scheme toward improving the performance of other semiconductor devices,especially optical and electronic devices based on low-dimensional materials.展开更多
Bulk materials Ba_(8)Ga_(16)In_(x)Ge_(30-x)(x=0.5,1.0,1.5)were prepared by High-Pressure and High-Temperature(HPHT)method and the crystal structure has been confirmed by X-ray diffraction and cell refinement.The actua...Bulk materials Ba_(8)Ga_(16)In_(x)Ge_(30-x)(x=0.5,1.0,1.5)were prepared by High-Pressure and High-Temperature(HPHT)method and the crystal structure has been confirmed by X-ray diffraction and cell refinement.The actual In composition was much lower than the starting composition,and lattice constants increased with the increase of substitution.As the temperature increased,the Seebeck coefficient and electrical resistivity increased first and then decreased,while the thermal conductivity was the opposite,which leads to significant enhancement on thermoelectric properties of the clathrates.The substitution of indium elements decreased the seebeck coefficient and electrical resistivity,and also changed the microstructure of the compounds.A minimum thermal conductivity of 0.84Wm^(-1)1K^(-1)was obtained,and a good ZT value of 0.52 was achieved.The grain boundaries and lattice defects generated by high pressure can effectively scatter phonons of different frequencies,which reduce the lattice thermal conductivity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61904043)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ19A040009).
文摘Optoelectronic properties of MoSe2 are modulated by controlled annealing in air.Characterizations by Raman spectroscopy and XPS demonstrate the introduction of oxygen defects.Considerable increase in electron and hole mobilities reveals the highly improved electron and hole transport.Furthermore,the photocurrent is enhanced by nearly four orders of magnitudes under 7 nW laser exposure after annealing.The remarkable enhancement in the photoresponse is attributed to an increase in hole trapping centers and a reduction in resistance.Furthermore,the annealed photodetector shows a fast time response on the order of 10 ms and responsivity of 3×10^(4) A/W.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51702289, 21801054 and 11604067)the Natural Science Foundation of Zhejiang Province(Grant No.LQ20E020006)
文摘To obtain various Ni/Mn orderings,we use a low-temperature synthesized method to modulate the Ni/Mn ordering of the ferromagnetic-ferroelastic La2NiMnO6 compound,and the Ni/Mn ordering is estimated by the low-temperature saturation magnetism.The microstructures,crystal structures and magnetic properties are investigated,and the Landau theory are used to describe the form and magnitude of the coupling effects between Ni/Mn ordering and magnetic order parameters.It is predicted that the Ni/Mn ordering would be a strong coupling effect with the Curie transition temperatures if the La2NiMnO6 sample stoichiometry is close.
基金This work was supported by the National Natural Science Foundation of China(No.61904043)the Natural Science Foundation of Zhejiang Province(No.LQ19A040009).
文摘Surface charge transfer doping has been widely utilized to tune the electronic and optical properties of semiconductor photodetectors based on low-dimensional materials.Although many studies have been conducted on the performance(response time,responsivity,etc.)of doped photodetectors and their mechanisms,they merely examined a specific thickness and did not systematically explore the dependence of doping effects on the number of layers.This work performs a series of investigations on ReS_(2)photodetectors with different numbers of layers and demonstrates that the p-dopant tetrafluorotetracyanoquinodimethane(F_(4)-TCNQ)converts the deep trap states into recombination centers for few-layer ReS_(2)and induces a vertical p-n junction for thicker ReS_(2).A response time of 200 ms is observed in the decorated 2-layer ReS_(2)photodetector,more than two orders of magnitude faster than the response of the pristine photodetector,due to the disappearance of deep trap states.A current rectification ratio of 30 in the F_(4)-TCNQ-decorated sandwiched ReS_(2)device demonstrates the formation of a vertical p-n junction in a thicker ReS_(2)device.The responsivity is as high as 2,000 A/W owing to the strong carrier separation of the p-n junction.Different thicknesses of ReS_(2)enable switching of the prominent operating mechanism between transforming deep trap states into recombination centers and forming a vertical p-n junction.The thicknessdependent doping effect of a two-dimensional material serves as a new mechanism and provides a scheme toward improving the performance of other semiconductor devices,especially optical and electronic devices based on low-dimensional materials.
基金This workwas financially supported by National Natural Science Foundation of China(51171070)the Project of Jilin Science and Technology Development Plan(20170101045JC).
文摘Bulk materials Ba_(8)Ga_(16)In_(x)Ge_(30-x)(x=0.5,1.0,1.5)were prepared by High-Pressure and High-Temperature(HPHT)method and the crystal structure has been confirmed by X-ray diffraction and cell refinement.The actual In composition was much lower than the starting composition,and lattice constants increased with the increase of substitution.As the temperature increased,the Seebeck coefficient and electrical resistivity increased first and then decreased,while the thermal conductivity was the opposite,which leads to significant enhancement on thermoelectric properties of the clathrates.The substitution of indium elements decreased the seebeck coefficient and electrical resistivity,and also changed the microstructure of the compounds.A minimum thermal conductivity of 0.84Wm^(-1)1K^(-1)was obtained,and a good ZT value of 0.52 was achieved.The grain boundaries and lattice defects generated by high pressure can effectively scatter phonons of different frequencies,which reduce the lattice thermal conductivity.