Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed co...Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed computing. Currently, the 5.9 GHz Dedicated Short Range Communications (DSRC) and 4G-Long-Term Evolution (LTE) are available for connected vehicle services. But both have limitations in reliability or latency over large scale field operational tests and deployment. This paper proposes the device-to-device (D2D) connectivity framework based on publish-subscribe architecture, with Message Queue Telemetry Transport (MQTT) protocol. With the publish-subscribe communication paradigm, road mobile users can exchange data and information in moderate latency and high reliability manner, having the potential to support many Vehicle to Everything (V2X) applications, including vehicle to vehicle (V2V), vehicle to roadside infrastructure (V2I), and vehicle to bicycle (V2B). The D2D data exchanges also facilitate computing for absolute and relative precise real-time kinematic (RTK) posi-tioning. Vehicular experiments were conducted to evaluate the performance of the proposed publish-subscribe MQTT protocols in term of latency and reliability. The latency of data exchanges is measured by One-trip-time (OTT) and the reliability is measured by the packet loss rate (PLR). Our results show that the latency of GNSS raw data exchanges between vehicles through 4G cellular networks at the rate of 10 Hz and the data rates of 10 kbps are less than 300 ms while the reliability is over 96%. Vehicular positioning experiments have also shown that vehicles can exchange raw GNSS data and complete mov-ing-base RTK positioning with the positioning availability of 98%.展开更多
文摘Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed computing. Currently, the 5.9 GHz Dedicated Short Range Communications (DSRC) and 4G-Long-Term Evolution (LTE) are available for connected vehicle services. But both have limitations in reliability or latency over large scale field operational tests and deployment. This paper proposes the device-to-device (D2D) connectivity framework based on publish-subscribe architecture, with Message Queue Telemetry Transport (MQTT) protocol. With the publish-subscribe communication paradigm, road mobile users can exchange data and information in moderate latency and high reliability manner, having the potential to support many Vehicle to Everything (V2X) applications, including vehicle to vehicle (V2V), vehicle to roadside infrastructure (V2I), and vehicle to bicycle (V2B). The D2D data exchanges also facilitate computing for absolute and relative precise real-time kinematic (RTK) posi-tioning. Vehicular experiments were conducted to evaluate the performance of the proposed publish-subscribe MQTT protocols in term of latency and reliability. The latency of data exchanges is measured by One-trip-time (OTT) and the reliability is measured by the packet loss rate (PLR). Our results show that the latency of GNSS raw data exchanges between vehicles through 4G cellular networks at the rate of 10 Hz and the data rates of 10 kbps are less than 300 ms while the reliability is over 96%. Vehicular positioning experiments have also shown that vehicles can exchange raw GNSS data and complete mov-ing-base RTK positioning with the positioning availability of 98%.