期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Botanist’s Cognitive View on Plant Growth: Cross-Talk between Developmental and Sensitivity Networks
1
作者 dhananjay k. pandey Bhupendra Chaudhary 《American Journal of Plant Sciences》 2016年第15期2307-2322,共17页
An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive succes... An alteration in plant phenotypes assisted by their responses to the environmental stimuli (=tropism) has been fundamental to understand the “plant sensitivity ” that plays a crucial role in plants’ adaptive success. Plants succeed through the deployment of moderators controlling polar auxin-transport determining organ bending. Stimulus-specific effectors can be synthesized by the outer peripheral cells at the bending sites where they target highly conserved cellular processes and potentially persuade the plant sensitivity at large. Remarkably, the peripheral cells require different time-intervals to achieve the threshold expression-levels of stimulus-specific molecular responders. After stimulus perception, tropic curvatures (especially at growing root-apices) are duly coordinated via integrated chemical and electrical signalling which is the key to cellular communications. Thus, the acquired phenotypic alterations are the perplexed outcome of plant’s developmental pace, complemented by the sensitivity. A novel aspect of this study is to advance our understanding of plant developmental-programming and the extent of plant-sensitivity, determining the plant growth and their future applications. 展开更多
关键词 TROPISM ANISOTROPY Plant Development Polar Auxin Transport Phototropic Response Gravitropic Response
下载PDF
Oxidative Stress Responsive <i>SERK1</i>Gene Directs the Progression of Somatic Embryogenesis in Cotton (<i>Gossypium hirsutum</i>L. cv. Coker 310) 被引量:4
2
作者 dhananjay k. pandey Bhupendra Chaudhary 《American Journal of Plant Sciences》 2014年第1期80-102,共23页
Somatic embryogenesis (SE) is a prominent mode of regeneration in plants. The acquisition of SE is predominantly invoked by the oxidative stress which plays an important role in signal transduction and cellular redox.... Somatic embryogenesis (SE) is a prominent mode of regeneration in plants. The acquisition of SE is predominantly invoked by the oxidative stress which plays an important role in signal transduction and cellular redox. Since balanced generation of oxidants is important to cellular differentiation, modulation in cell redox could be responsive to genotypic refinement for SE. To study the dynamics of cellular redox during SE, we conducted comparative expression analyses of cotton (Gossypium hirsutum), using two independently purified near-isogenic lines for the trait of SE. We interrogated expression changes in cell-signaling factor Somatic Embryogenesis Receptor Kinase (SERK) and activity of antioxidant Glutathione in different developmental stages including cotyledonary leaf, calli from different stages of regeneration of fully-regenerating (FR) and non-regenerating (NR) lines of Coker310 cultivar. At evolutionary scale, the cotton SERKs showed high sequence similarity in receptor kinase domain with diverse systems. Exclusively, SERK1 responsible for potential signaling processes during SE revealed significant expression up-regulation in the embryogenic calli of FR line. Similarly, activity of antioxidant glutathione was substantially up-regulated in embryogenic calli of FR line in comparison to its counterpart form. In contrast, calli from early-stages of regeneration of both FR and NR lines had no significant influences on the regulation of SERK and glutathione levels prior to the acquisition of embryogenesis. These results highlight that in vitro purification of FR line in cotton for enhanced regeneration potential (through SE) resulted in signaling and metabolic transformations of the manner in which cellular redox levels have become modulated. 展开更多
关键词 COTTON Somatic Embryogenesis SERK Antioxidant
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部