Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. ...Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.展开更多
Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminan...Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.展开更多
Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failu...Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.展开更多
A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High gr...A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High granularity and direct charge sensing are the main features of this device.It measures the beam position in a two-dimensional(2D)plane transverse to the beam direction on an event-by-event basis.The current design consists of two field cages inside a single vessel that operates independently and has electrical drift fields in orthogonal directions.Preliminary tests of the prototype were performed using a^(241)Am a source.The results show that a spatial resolution of less than 40μm and a time resolution of less than 600 ns can be achieved.展开更多
The single-event effect(SEE) is a serious threat to electronics in radiation environments. The most important issue in radiation-hardening studies is the localization of the sensitive region in electronics to the SEE....The single-event effect(SEE) is a serious threat to electronics in radiation environments. The most important issue in radiation-hardening studies is the localization of the sensitive region in electronics to the SEE. To solve this problem, a prototype based on a complementary metal oxide semiconductor(CMOS) pixel sensor, i.e., TopmetalM, was designed for SEE localization. A beam test was performed on the prototype at the radiation terminal of the Heavy Ion Research Facility in Lanzhou(HIRFL). The results indicated that the inherent deflection angle of the prototype to the beam was 1.7°, and the angular resolution was 0.6°. The prototype localized heavy ions with a position resolution of 3.4 μm.展开更多
This article investigates the controllability problem of multi-agent systems. Each agent is assumed to be governed by a second-order consensus control law corresponding to a directed and weighted graph. Two types of t...This article investigates the controllability problem of multi-agent systems. Each agent is assumed to be governed by a second-order consensus control law corresponding to a directed and weighted graph. Two types of topology are considered. The first is concerned with directed trees, which represent the class of topology with minimum information exchange among all controllable topologies. A very simple necessary and sufficient condition regarding the weighting scheme is obtained for the controllability of double integrator multi-agent systems in this scenario. The second is concerned with a more general graph that can be reduced to a directed tree by contracting a cluster of nodes to a component. A similar necessary and sufficient condition is derived. Finally, several illustrative examples are provided to demonstrate the theoretical analysis results.展开更多
Delayed recovery from ulcerative colitis is mainly due to impaired healing of the intestinal epithelium after inflammation.The circadian rhythmcontrols cell proliferation and energy metabolism.However,the role of circ...Delayed recovery from ulcerative colitis is mainly due to impaired healing of the intestinal epithelium after inflammation.The circadian rhythmcontrols cell proliferation and energy metabolism.However,the role of circadian genes in inflammatory bowel disease is largely unknown.The purpose of this study was to investigate whether disrupting the circadian rhythm in mice can worsen colitis by altering mitochondrial energy metabolism.Mice in the experimental groups were under physiologic stress with an 8-h light shift jet-lag schedule every 3 days,whereas those in the control group were not.Subsequently,half of the mice in the control and jet-lagged groups were given dextran sodium sulfate(DSS)to induce colitis.Mice in each group were euthanized at zeitgeber time(ZT)0,ZT4,ZT8,ZT12,ZT16,and ZT20.To investigate the effects of jet lag on the mice,colon specimens were subjected to hematoxylin and eosin staining to analyse mRNA and protein expression of core circadian clock genes(Bmal1,Clock,Per1,Per2,Cry1,Cry2,and Nr1d1).We analysed the mitochondrial morphology,adenosine triphosphate(ATP)levels,and the expression of dynamin-related protein 1(Drp1)and ser637-phosphorylated(p)-Drp1,which are closely related to ATP production.We further investigated the effect of PER2 knockdown in the colon epithelial cells(CCD 841 CoN)by measuring ATP and cell proliferation levels.Disrupting the circadian rhythm changed the oscillation of clock genes in the colon of mice,altered the mitochondrial morphology of the colon specimens,decreased the expression of p-Drp1,reduced ATP production,and exacerbated inflammatory responses in mice with DSS-induced colitis.Additionally,silencing of PER2 in the colon epithelial cells reduced ATP production and cell proliferation.Disrupting the circadian rhythm in mice decreases mitochondrial energy metabolism in the colon and exacerbates symptoms of colitis.展开更多
Various living creatures exhibit embodiment intelligence,which is reflected by a collaborative interaction of the brain,body,and environment.The actual behavior of embodiment intelligence is generated by a continuous ...Various living creatures exhibit embodiment intelligence,which is reflected by a collaborative interaction of the brain,body,and environment.The actual behavior of embodiment intelligence is generated by a continuous and dynamic interaction between a subject and the environment through information perception and physical manipulation.The physical interaction between a robot and the environment is the basis for realizing embodied perception and learning.Tactile information plays a critical role in this physical interaction process.It can be used to ensure safety,stability,and compliance,and can provide unique information that is difficult to capture using other perception modalities.However,due to the limitations of existing sensors and perception and learning methods,the development of robotic tactile research lags significantly behind other sensing modalities,such as vision and hearing,thereby seriously restricting the development of robotic embodiment intelligence.This paper presents the current challenges related to robotic tactile embodiment intelligence and reviews the theory and methods of robotic embodied tactile intelligence.Tactile perception and learning methods for embodiment intelligence can be designed based on the development of new large-scale tactile array sensing devices,with the aim to make breakthroughs in the neuromorphic computing technology of tactile intelligence.展开更多
The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality.Here, we evaluated how the joint effect of Streptomyces pactum(strain Act12) and inorganic(Hoagland...The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality.Here, we evaluated how the joint effect of Streptomyces pactum(strain Act12) and inorganic(Hoagland’s solution) and organic(humic acid and peat) nutrients affected the phytoextraction practice of cadmium(Cd) and zinc(Zn) by potherb mustard, and the microbial community composition within rhizosphere was also investigated.The results indicated that the nutrients exerted synergistically with Act12, all increasing the plant biomass and Cd/Zn uptakes.The inoculation of Act12 alone significantly increased dehydrogenase activity of rhizosphere soil(P<0.05), while urease and alkaline phosphatase activities varied in different dosage of Act12.Combined application of microbial strain with nutrients increased enzymatic activities with the elevated dosage of Act12.16S ribosomal RNA high-throughput sequencing analysis revealed that Act12 inoculation reduced the diversity of rhizosphere bacteria.The Act12 and nutrients did not change dominant phyla i.e.,Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Acidobacteria, but their relative abundance differed among the treatments with: Peat>Act12>Humic acid >Hoagland’s solution.Comparatively, Sphingomonas replaced Thiobacillus as dominant genus after Act12 application.The increase in the Sphingomonas and Flavisolibacter abundances under Act12 and nutrients treatments gave rise to growth-promoting effect on plant.Our results revealed the important role for rhizosphere microbiota in mediating soil biochemical traits and plant growth, and our approach charted a path toward the development of Act12 combined with soil nutrients to enhance soil quality and phytoextraction efficiency in Cd/Zn-contaminated soils.展开更多
Potassium ion capacitors(PICs)are regarded as promising large-scale aqueous energy storage systems.However,due to the poor K^(+)transport kinetics and the structural instability of the cathode materials,the key issues...Potassium ion capacitors(PICs)are regarded as promising large-scale aqueous energy storage systems.However,due to the poor K^(+)transport kinetics and the structural instability of the cathode materials,the key issues of limited energy density and poor cyclic stability are obstacles to the in-depth growth of PICs.Herein,a novel O-doped perovskite fluoride is demonstrated via an in-situ electrochemical oxidation strategy as the cathode for PICs,introducing additional defects that improve the capacitance and facilitate the reaction kinetics of the electrode.During the electrochemical oxidation process,it is discovered that the perovskite fluoride crystal tends to transform into disordered O-doped KMnF 3(K_(x)MnF_(y)O_(z)),realizing a structural reconstruction at the electrode material/electrolyte interface.The First-principles calculations based on density functional theory(DFT)are performed to confirm that the improved electrical conduc-tivity and low ionic adsorption energy may be ascribed to the substitution of oxygen for fluorine.The obtained K_(1.14)MnF_(1.17)O_(1.26) cathode achieves a high specific capacitance of 694 F g^(-1) at 1 A g^(-1),as well as high capacitance retention of 91.3%after 10,000 charge/discharge cycles in mild K_(2)SO_(4) electrolyte.This study provides an effective strategy to improve the capacitive performance of perovskite fluoride cathode materials in electrochemical energy storage.展开更多
With rapid urbanization in China,an increasing building density has squeezed the urban public space.Community streets are occupied by motor vehicles or other functions,and can no longer sufficiently support children t...With rapid urbanization in China,an increasing building density has squeezed the urban public space.Community streets are occupied by motor vehicles or other functions,and can no longer sufficiently support children to carry out safe and independent activities.As an important space for children’s daily natural contact and social activities,the lack of the spatial function of streets results in a decline in children’s subjective initiative and social abilities.The United Nations has stressed the importance of community as the basic unit of space for children’s daily activities in building child friendly cities.It is urgent to reshape child-friendly community streets and support children’s healthy growth.Integrating previous research results on affordance theory and design,children’s growth and environment,and street-game spaces,this study focuses on investigating 23 community streets in four residential communities in Nanjing through questionnaires,interviews,observations,and other methods.Then,from the perspective of cognitive affordance,functional affordance,and social affordance,it analyzes the behavioral possibilities provided by the environment and the needs of the children-user group.Finally,from the perspectives of openness and security,preference and diversity,positive and negative,and reality and potential,it proposes a method to assess the existing environment.This study aims to extract the significant characteristics of the built environment that effectively support and promote children’s outdoors activities,and explore the design strategy of improving street space sharing through optimizing space elements and structure at the medium and micro levels,so as to respond to multiple goals including livable city development from the perspective of child friendliness.This study also tries to change the logical way of design thinking and provide an eco-psychological perspective on how to build a child-friendly community.展开更多
Biomimetic mechanosensors have profound implications for various areas,including health care,prosthetics,human‒machine interfaces,and robotics.As one of the most important parameters,the sensitivity of mechanosensors ...Biomimetic mechanosensors have profound implications for various areas,including health care,prosthetics,human‒machine interfaces,and robotics.As one of the most important parameters,the sensitivity of mechanosensors is intrinsically determined by the detection resolution to mechanical force.In this manuscript,we expand the force detection resolution of current biomimetic mechanosensors from the micronewton to nanonewton scale.We develop a nanocrack-based electronic whisker-type mechanosensor that has a detection resolution of 72.2 nN.We achieve the perception of subtle mechanical stimuli,such as tiny objects and airflow,and the recognition of surface morphology down to a 30 nm height,which is the finest resolution ever reported in biomimetic mechanosensors.More importantly,we explore the use of this mechanosensor in wearable devices for sensing gravity field orientation with respect to the body,which has not been previously achieved by these types of sensors.We develop a wearable smart system for sensing the body’s posture and movements,which can be used for remote monitoring of falls in elderly people.In summary,the proposed device offers great advantages for not only improving sensing ability but also expanding functions and thus can be used in many fields not currently served by mechanosensors.展开更多
基金supported by the National Natural Science Foundation of China,No. 81801213 (to BP)Xuzhou Special Fund for Promoting Scientific and Technological Innovation,Nos. KC21177 (to BP),KC21195 (to HF)Science and Technology Project of Yili Kazak Autonomous Prefecture,No. YZ2019D006 (to HF)。
文摘Research has shown that long-chain noncoding RNAs(lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
基金the National Natural Science Foundation of China(No.22179108)the Key Research and Development Projects of Shaanxi Province,China(No.2020GXLH-Z-032)+2 种基金the Doctoral Re-search Start-up Fund project of Xi’an Polytechnic University(No.107020589)the Shaanxi Provincial High-Level Talents Introduction Project(Youth Talent Fund)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,China(No.22567627H).
文摘Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored.
基金the Science and Technology Research Project of the Education Department of Jilin Province(No.JJKH20220862KJ)the Jilin Province higher education teaching reform research topic(No.20224BRFI7U003M)National Natural Science Foundation of China(No.82074324).
文摘Background:The aim of this study is to investigate the mechanism of action underlying the therapeutic effects of the national patent Chinese medicine compound“Qiangxinhuoli prescription(QXHLF)”on chronic heart failure(CHF).Methods:In vitro,the H_(9)C_(2) cell model was induced by ANGII,and cell proliferation and related protein expression were detected by Cell Counting Kit-8 and Western blot.In vivo,A rat model of CHF was prepared by ligation of the left anterior descending coronary artery.The effects of QXHLF on cardiac function in CHF rats were evaluated by cardiac index,hemodynamic changes,enzyme-linked immunosorbent assay,hematoxylin-eosin staining,immunohistochemistry,Western blot and RT-PCR.The expression of pro-apoptotic factors and anti-apoptotic factors,as well as TGFβ1,p-p38,TAK 1 mRNA,and protein,were detected.Results:In vitro,QXHLF has a significant inhibitory effect on the proliferation of H_(9)C_(2) cells.QXHLF can reduce the expression levels of TAK 1,TGFβ1,p-p38,Caspase3 and BAX proteins in H_(9)C_(2) cells,and increase the expression level of BCL_(2) protein.In vivo,QXHLF has the potential to increase left ventricular systolic pressure,m aximum rate of change in left ventricular pressure while decreasing left ventricular end diastolic pressure,and inhibiting the serum levels of brain natriuretic peptide.Moreover,QXHLF exhibits significant improvements in the pathological alterations of myocardial cells and fibers in CHF rats,leading to enhanced myocardial tissue morphology and notable advantages in combating myocardial fibrosis.QXHLF can reduce the levels of BAX and Caspase3 and up-regulate the expression of BCL_(2),thereby inhibiting cardiomyocyte apoptosis.Furthermore,QXHLF demonstrates inhibitory effects on the mRNA and protein expression levels of TGFβ_(1),TAK_(1),and p-p38 in the heart tissue of the CHF rat model.Conclusion:These findings indicate that QXHLF has a therapeutic effect on CHF by inhibiting the p38-MAPK signaling pathway,reducing myocardial fibrosis,preventing apoptosis,inhibiting cell proliferation,and restoring myocardial injury.
基金supported by the National Natural Science Foundation of China (Nos. 11927901, U2032209, 12005046)
文摘A prototype beam monitor was designed to provide tracking information for heavy-ion projectiles for the cool storage ring(CSR)external target experiment(CEE)at the Heavy Ion Research Facility in Lanzhou(HIRFL).High granularity and direct charge sensing are the main features of this device.It measures the beam position in a two-dimensional(2D)plane transverse to the beam direction on an event-by-event basis.The current design consists of two field cages inside a single vessel that operates independently and has electrical drift fields in orthogonal directions.Preliminary tests of the prototype were performed using a^(241)Am a source.The results show that a spatial resolution of less than 40μm and a time resolution of less than 600 ns can be achieved.
基金supported by the National Natural Science Foundation of China(No.U1932143),the National Key Research and Development Program of China(No.2020YFE0202002)the National Natural Science Foundation of China(Nos.11875146,11927901,12075099,12075100,11875145,U2032209)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34000000).
文摘The single-event effect(SEE) is a serious threat to electronics in radiation environments. The most important issue in radiation-hardening studies is the localization of the sensitive region in electronics to the SEE. To solve this problem, a prototype based on a complementary metal oxide semiconductor(CMOS) pixel sensor, i.e., TopmetalM, was designed for SEE localization. A beam test was performed on the prototype at the radiation terminal of the Heavy Ion Research Facility in Lanzhou(HIRFL). The results indicated that the inherent deflection angle of the prototype to the beam was 1.7°, and the angular resolution was 0.6°. The prototype localized heavy ions with a position resolution of 3.4 μm.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LR13F030002)the Fundamental Research Funds for the Central Universities,China(No.110201*172210151)
文摘This article investigates the controllability problem of multi-agent systems. Each agent is assumed to be governed by a second-order consensus control law corresponding to a directed and weighted graph. Two types of topology are considered. The first is concerned with directed trees, which represent the class of topology with minimum information exchange among all controllable topologies. A very simple necessary and sufficient condition regarding the weighting scheme is obtained for the controllability of double integrator multi-agent systems in this scenario. The second is concerned with a more general graph that can be reduced to a directed tree by contracting a cluster of nodes to a component. A similar necessary and sufficient condition is derived. Finally, several illustrative examples are provided to demonstrate the theoretical analysis results.
基金supported by National Key R&D Program of China[No.2018YFC0114600]National Natural Science Foundation of China[No.82170547,No.81873558].
文摘Delayed recovery from ulcerative colitis is mainly due to impaired healing of the intestinal epithelium after inflammation.The circadian rhythmcontrols cell proliferation and energy metabolism.However,the role of circadian genes in inflammatory bowel disease is largely unknown.The purpose of this study was to investigate whether disrupting the circadian rhythm in mice can worsen colitis by altering mitochondrial energy metabolism.Mice in the experimental groups were under physiologic stress with an 8-h light shift jet-lag schedule every 3 days,whereas those in the control group were not.Subsequently,half of the mice in the control and jet-lagged groups were given dextran sodium sulfate(DSS)to induce colitis.Mice in each group were euthanized at zeitgeber time(ZT)0,ZT4,ZT8,ZT12,ZT16,and ZT20.To investigate the effects of jet lag on the mice,colon specimens were subjected to hematoxylin and eosin staining to analyse mRNA and protein expression of core circadian clock genes(Bmal1,Clock,Per1,Per2,Cry1,Cry2,and Nr1d1).We analysed the mitochondrial morphology,adenosine triphosphate(ATP)levels,and the expression of dynamin-related protein 1(Drp1)and ser637-phosphorylated(p)-Drp1,which are closely related to ATP production.We further investigated the effect of PER2 knockdown in the colon epithelial cells(CCD 841 CoN)by measuring ATP and cell proliferation levels.Disrupting the circadian rhythm changed the oscillation of clock genes in the colon of mice,altered the mitochondrial morphology of the colon specimens,decreased the expression of p-Drp1,reduced ATP production,and exacerbated inflammatory responses in mice with DSS-induced colitis.Additionally,silencing of PER2 in the colon epithelial cells reduced ATP production and cell proliferation.Disrupting the circadian rhythm in mice decreases mitochondrial energy metabolism in the colon and exacerbates symptoms of colitis.
基金supported by the National Natural Science Foundation of China under Grant No.61703284 and Grant No.61673238
文摘Various living creatures exhibit embodiment intelligence,which is reflected by a collaborative interaction of the brain,body,and environment.The actual behavior of embodiment intelligence is generated by a continuous and dynamic interaction between a subject and the environment through information perception and physical manipulation.The physical interaction between a robot and the environment is the basis for realizing embodied perception and learning.Tactile information plays a critical role in this physical interaction process.It can be used to ensure safety,stability,and compliance,and can provide unique information that is difficult to capture using other perception modalities.However,due to the limitations of existing sensors and perception and learning methods,the development of robotic tactile research lags significantly behind other sensing modalities,such as vision and hearing,thereby seriously restricting the development of robotic embodiment intelligence.This paper presents the current challenges related to robotic tactile embodiment intelligence and reviews the theory and methods of robotic embodied tactile intelligence.Tactile perception and learning methods for embodiment intelligence can be designed based on the development of new large-scale tactile array sensing devices,with the aim to make breakthroughs in the neuromorphic computing technology of tactile intelligence.
基金supported by the Fundamental Research Funds for the Central Universities of China (Nos. 3102019JC007, G2021KY0601)。
文摘The ultimate purpose of phytoextraction is not only to remove heavy metals from soil but also to improve soil quality.Here, we evaluated how the joint effect of Streptomyces pactum(strain Act12) and inorganic(Hoagland’s solution) and organic(humic acid and peat) nutrients affected the phytoextraction practice of cadmium(Cd) and zinc(Zn) by potherb mustard, and the microbial community composition within rhizosphere was also investigated.The results indicated that the nutrients exerted synergistically with Act12, all increasing the plant biomass and Cd/Zn uptakes.The inoculation of Act12 alone significantly increased dehydrogenase activity of rhizosphere soil(P<0.05), while urease and alkaline phosphatase activities varied in different dosage of Act12.Combined application of microbial strain with nutrients increased enzymatic activities with the elevated dosage of Act12.16S ribosomal RNA high-throughput sequencing analysis revealed that Act12 inoculation reduced the diversity of rhizosphere bacteria.The Act12 and nutrients did not change dominant phyla i.e.,Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria and Acidobacteria, but their relative abundance differed among the treatments with: Peat>Act12>Humic acid >Hoagland’s solution.Comparatively, Sphingomonas replaced Thiobacillus as dominant genus after Act12 application.The increase in the Sphingomonas and Flavisolibacter abundances under Act12 and nutrients treatments gave rise to growth-promoting effect on plant.Our results revealed the important role for rhizosphere microbiota in mediating soil biochemical traits and plant growth, and our approach charted a path toward the development of Act12 combined with soil nutrients to enhance soil quality and phytoextraction efficiency in Cd/Zn-contaminated soils.
基金the financial support from Liaoning Sci-ence and Technology Development Foundation Guided by Cen-tral Government(No.2021JH6/10500139)the Fundamental Research Funds for the Central Universities(No.N2205003)+2 种基金the financial support from the National Natural Science Foundation of China(No.52003007)Nat-ural Science Foundation of Hebei Province(No.E2019409063)Langfang top-notch talent(No.LFBJ202004).
文摘Potassium ion capacitors(PICs)are regarded as promising large-scale aqueous energy storage systems.However,due to the poor K^(+)transport kinetics and the structural instability of the cathode materials,the key issues of limited energy density and poor cyclic stability are obstacles to the in-depth growth of PICs.Herein,a novel O-doped perovskite fluoride is demonstrated via an in-situ electrochemical oxidation strategy as the cathode for PICs,introducing additional defects that improve the capacitance and facilitate the reaction kinetics of the electrode.During the electrochemical oxidation process,it is discovered that the perovskite fluoride crystal tends to transform into disordered O-doped KMnF 3(K_(x)MnF_(y)O_(z)),realizing a structural reconstruction at the electrode material/electrolyte interface.The First-principles calculations based on density functional theory(DFT)are performed to confirm that the improved electrical conduc-tivity and low ionic adsorption energy may be ascribed to the substitution of oxygen for fluorine.The obtained K_(1.14)MnF_(1.17)O_(1.26) cathode achieves a high specific capacitance of 694 F g^(-1) at 1 A g^(-1),as well as high capacitance retention of 91.3%after 10,000 charge/discharge cycles in mild K_(2)SO_(4) electrolyte.This study provides an effective strategy to improve the capacitive performance of perovskite fluoride cathode materials in electrochemical energy storage.
基金This paper was supported by the National Natural Science Foundation of China,China(Grant no.51978140).
文摘With rapid urbanization in China,an increasing building density has squeezed the urban public space.Community streets are occupied by motor vehicles or other functions,and can no longer sufficiently support children to carry out safe and independent activities.As an important space for children’s daily natural contact and social activities,the lack of the spatial function of streets results in a decline in children’s subjective initiative and social abilities.The United Nations has stressed the importance of community as the basic unit of space for children’s daily activities in building child friendly cities.It is urgent to reshape child-friendly community streets and support children’s healthy growth.Integrating previous research results on affordance theory and design,children’s growth and environment,and street-game spaces,this study focuses on investigating 23 community streets in four residential communities in Nanjing through questionnaires,interviews,observations,and other methods.Then,from the perspective of cognitive affordance,functional affordance,and social affordance,it analyzes the behavioral possibilities provided by the environment and the needs of the children-user group.Finally,from the perspectives of openness and security,preference and diversity,positive and negative,and reality and potential,it proposes a method to assess the existing environment.This study aims to extract the significant characteristics of the built environment that effectively support and promote children’s outdoors activities,and explore the design strategy of improving street space sharing through optimizing space elements and structure at the medium and micro levels,so as to respond to multiple goals including livable city development from the perspective of child friendliness.This study also tries to change the logical way of design thinking and provide an eco-psychological perspective on how to build a child-friendly community.
基金supported by Joint Large Scale Scientific Facility Funds of the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)(U1932110,NSFC(11805059,11805012,11675051,12322502),and 12335002)Fundamental Research Funds for the central Universities+3 种基金supported by Deutsche Forschungsgemeinschaft(DFG)(TRR110)NSFC through funds provided to the Sino-German CRC 110“Symmetries and the Emergence of Structure in QCD”(11621131001)supported in part by VolkswagenStiftung(93562)by the CAS President’s International Fellowship Initiative(PIFI)(2018DM0034)。
基金The authors thank Prof.Dazhi Wang for providing the tunable three-axis stage.This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB2008502)the National Natural Science Foundation of China(Grant No.51875083)the Dalian Science&Technology Innovation Fund(Grant No.2020JJ25CY018).
文摘Biomimetic mechanosensors have profound implications for various areas,including health care,prosthetics,human‒machine interfaces,and robotics.As one of the most important parameters,the sensitivity of mechanosensors is intrinsically determined by the detection resolution to mechanical force.In this manuscript,we expand the force detection resolution of current biomimetic mechanosensors from the micronewton to nanonewton scale.We develop a nanocrack-based electronic whisker-type mechanosensor that has a detection resolution of 72.2 nN.We achieve the perception of subtle mechanical stimuli,such as tiny objects and airflow,and the recognition of surface morphology down to a 30 nm height,which is the finest resolution ever reported in biomimetic mechanosensors.More importantly,we explore the use of this mechanosensor in wearable devices for sensing gravity field orientation with respect to the body,which has not been previously achieved by these types of sensors.We develop a wearable smart system for sensing the body’s posture and movements,which can be used for remote monitoring of falls in elderly people.In summary,the proposed device offers great advantages for not only improving sensing ability but also expanding functions and thus can be used in many fields not currently served by mechanosensors.