Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and superc...Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and supercapacitors.The 3D vertically orientated NiTe dendritic frameworks induce the homogeneous nucleation of 2D Ni_(x)Co_(12-x)Se nanosheet arrays along similar crystal directions and bring a strong interfacial binding between the integrated active components.In particular,the optimized Ni_(6)Co_(6)Se@NiTe with an interface coupling effect works in concert to tune the intrinsic activity.It only needs a low overpotential of 1.33 V to yield a current density of 10 mA cm^(-2)for alkaline urea electrolysis.Meanwhile,the full urea catalysis driven only by Ni_(6)Co_(6)Se@NiTe achieves 10 mA cm^(-2)at a potential of 1.38 V and can approach a constant level of the current response for 40 h.Besides,the integrated Ni_(6)Co_(6)Se@NiTe electrode delivers an enhanced specific capacity(223 mA h g^(-1)at 1 A g^(-1))with a high cycling stability.Consequently,a hybrid asymmetric supercapacitor(HASC)device based on Ni_(6)Co_(6)Se@NiTe exhibits a favorable rate capability and reaches a high energy density of 67.7 Wh kg^(-1)and a power density of 724.8 W kg^(-1)with an exceptional capacity retention of 92.4%after sequential 12000 cycles at 5 A g^(-1).展开更多
High photogenerated carrier recombination rate and weak spectral response are the two main factors restricting photocatalytic activities of photocatalysts.In this work,a novel Ag/Bi_(24)O_(31)Cl_(10)heterojunction has...High photogenerated carrier recombination rate and weak spectral response are the two main factors restricting photocatalytic activities of photocatalysts.In this work,a novel Ag/Bi_(24)O_(31)Cl_(10)heterojunction has been developed by the in-situ photoreduction technique to address the preceding issues.Physico-chemical properties of as-synthesized 0.7 wt%Ag/Bi_(24)O_(31)Cl_(10)photocatalysts were investigated in detail.The Ag clusters can be seen as surface plasmon polaritons to light absorption capacity and photothermal effect,which was demonstrated via Raman and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Den-sity functional theory(DFT)calculations show that the additional unoccupied crystal orbital by the silver(Ag)will accelerate the charge separation where some of the excited electrons to the conduction band of Bi_(24)O_(31)Cl_(10)will drift to these orbitals which in turn prevent charge recombination.Therefore,Ag metal cluster-decorated Bi_(24)O_(31)Cl_(10)photocatalysts can be identified as electron trappers to boost the spatial separation of the photogenerated carrier,and finally,the CH 4 generation rate and the rhodamine b(RhB)degraded efficiency of Ag/Bi_(24)O_(31)Cl_(10)photocatalysts are enhanced about 1.54 and 5.20 times,respectively.The Ag/Bi_(24)O_(31)Cl_(10)composite photocatalyst retained high photocatalytic activities after four cycles indi-cating the stability and repeatability of the Ag/Bi_(24)O_(31)Cl_(10)composite.This work aims to provide new insight into modifying ideal semiconductor materials for high photocatalytic activity.展开更多
基金supported by the open fund of the National Defense Key Discipline Laboratory of New Micro/Nano Devices and System Technology,Zhejiang Provincial Natural Science Foundation of China,under Grant No.LY19E020014NSFC(Grant Nos 21303162 and 11604295)
文摘Herein,we demonstrate the synthesis of bifunctional nickel cobalt selenide@nickel telluride(Ni_(x)Co_(12-x)Se@NiTe)core-shell heterostructures via an electrodeposition approach for overall urea electrolysis and supercapacitors.The 3D vertically orientated NiTe dendritic frameworks induce the homogeneous nucleation of 2D Ni_(x)Co_(12-x)Se nanosheet arrays along similar crystal directions and bring a strong interfacial binding between the integrated active components.In particular,the optimized Ni_(6)Co_(6)Se@NiTe with an interface coupling effect works in concert to tune the intrinsic activity.It only needs a low overpotential of 1.33 V to yield a current density of 10 mA cm^(-2)for alkaline urea electrolysis.Meanwhile,the full urea catalysis driven only by Ni_(6)Co_(6)Se@NiTe achieves 10 mA cm^(-2)at a potential of 1.38 V and can approach a constant level of the current response for 40 h.Besides,the integrated Ni_(6)Co_(6)Se@NiTe electrode delivers an enhanced specific capacity(223 mA h g^(-1)at 1 A g^(-1))with a high cycling stability.Consequently,a hybrid asymmetric supercapacitor(HASC)device based on Ni_(6)Co_(6)Se@NiTe exhibits a favorable rate capability and reaches a high energy density of 67.7 Wh kg^(-1)and a power density of 724.8 W kg^(-1)with an exceptional capacity retention of 92.4%after sequential 12000 cycles at 5 A g^(-1).
基金supported by the National Natural Science Foundation of China(No.12274361)Natural Science Foundation of Jiangsu Province(No.BK20211361)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_3145)school-level research projects of Yancheng Institute of Technology(Nos.xjr2019028 and xjr2019059).
文摘High photogenerated carrier recombination rate and weak spectral response are the two main factors restricting photocatalytic activities of photocatalysts.In this work,a novel Ag/Bi_(24)O_(31)Cl_(10)heterojunction has been developed by the in-situ photoreduction technique to address the preceding issues.Physico-chemical properties of as-synthesized 0.7 wt%Ag/Bi_(24)O_(31)Cl_(10)photocatalysts were investigated in detail.The Ag clusters can be seen as surface plasmon polaritons to light absorption capacity and photothermal effect,which was demonstrated via Raman and UV-Vis diffuse reflectance spectra(UV-Vis DRS).Den-sity functional theory(DFT)calculations show that the additional unoccupied crystal orbital by the silver(Ag)will accelerate the charge separation where some of the excited electrons to the conduction band of Bi_(24)O_(31)Cl_(10)will drift to these orbitals which in turn prevent charge recombination.Therefore,Ag metal cluster-decorated Bi_(24)O_(31)Cl_(10)photocatalysts can be identified as electron trappers to boost the spatial separation of the photogenerated carrier,and finally,the CH 4 generation rate and the rhodamine b(RhB)degraded efficiency of Ag/Bi_(24)O_(31)Cl_(10)photocatalysts are enhanced about 1.54 and 5.20 times,respectively.The Ag/Bi_(24)O_(31)Cl_(10)composite photocatalyst retained high photocatalytic activities after four cycles indi-cating the stability and repeatability of the Ag/Bi_(24)O_(31)Cl_(10)composite.This work aims to provide new insight into modifying ideal semiconductor materials for high photocatalytic activity.