期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method
1
作者 Rui wang Chaosheng Tang +4 位作者 Xiaohua Pan dianlong wang Zhihao Dong Xiying Zhang Xiancai Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3760-3771,共12页
This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra... This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge. 展开更多
关键词 Reactive magnesia cement(RMC)biocarbonation Urea pre-hydrolysis Dredged sludge Efficient stabilization Unconfined compressive strength Microbially induced carbonate precipitation(MICP)
下载PDF
High donor-number and low content electrolyte additive for stabilizing zinc metal anode
2
作者 Yuxin Gong Ruifan Lin +9 位作者 Bo wang Huaizheng Ren Lei wang Han Zhang Jianxin wang Deyu Li Yueping Xiong dianlong wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期626-635,I0014,共11页
The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactio... The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactions.Herein,to stabilize both zinc anodes and water molecules,we developed a modified electrolyte by adding a trace amount of N,N-diethylformanmide(DEF)into the ZnSO_(4)electrolyte for the first time in zinc ion batteries.The effectiveness of DEF is predicted by the comparison of donor number and its preferential adsorption behavior on the zinc anode is further demonstrated by several spectroscopy characterizations,electrochemical methods,and molecular dynamics simulation.The modified electrolyte with 5%v.t.DEF content can ensure a stable cycling life longer than 3400 h of Zn‖Zn symmetric cells and an ultra-reversible Zn stripping/plating process with a high coulombic efficiency of 99.7%.The Zn‖VO_(2)full cell maintains a capacity retention of 83.5%and a 104 mA h g^(-1)mass capacity after 1000cycles.This work provides insights into the role of interfacial adsorption behavior and the donor number of additive molecules in designing low-content and effective aqueous electrolytes. 展开更多
关键词 Aqueous zinc ion batteries Zinc anode Electrolyte additives Donor number Zinc dendrites
下载PDF
Synergistic coupling among Mg_(2)B_(2)O_(5),polycarbonate and N,Ndimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte
3
作者 Yutong Jing Qiang Lv +8 位作者 Yujia Chen Bo wang Bochen Wu Cheng Li Shengbo Yang Zhipeng He dianlong wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期158-168,共11页
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr... Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs. 展开更多
关键词 Composite solid electrolytes Safe Li metal batteries Synergistic coupling effect Poly(vinylidene fluoride-co-hexafluoropro pylene)
下载PDF
Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High‑Performance Zinc Anode:Principles,Strategies,and Challenges 被引量:5
4
作者 Yuxin Gong Bo wang +4 位作者 Huaizheng Ren Deyu Li dianlong wang Huakun Liu Shixue Dou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期317-348,共32页
The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,th... The last several years have witnessed the prosperous development of zinc-ion batteries(ZIBs),which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety.However,the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth,hydrogen evolution,and corrosion passivation on anode side.A functionally and structurally well-designed anode current collectors(CCs)is believed as a viable solution for those problems,with a lack of summarization according to its working mechanisms.Herein,this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs,which can be divided into zincophilic modification,structural design,and steering the preferred crystal facet orientation.The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs. 展开更多
关键词 Zinc anodes Current collectors Surface modification Structural design Crystal facet orientation
下载PDF
Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries 被引量:4
5
作者 Qiang Lv Yajie Song +10 位作者 Bo wang Shangjie wang Bochen Wu Yutong Jing Huaizheng Ren Shengbo Yang Lei wang Lihui Xiao dianlong wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期613-622,I0014,共11页
Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low ... Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low resistance to Li dendrites seriously hinder the commercialization of SPEs.Herein,we design a bifunctional flame retardant SPE by combining hydroxyapatite(HAP)nanomaterials with Nmethyl pyrrolidone(NMP)in the PVDF-HFP matrix.The addition of HAP generates a hydrogen bond network with the PVDF-HFP matrix and cooperates with NMP to facilitate the dissociation of Li TFSI in the PVDF-HFP matrix.Consequently,the prepared SPE demonstrates superior ionic conductivity at RT,excellent fireproof properties,and strong resistance to Li dendrites.The assembled Li symmetric cell with prepared SPE exhibits a stable cycling performance of over 1200 h at 0.2 m A cm^(-2),and the solid-state LiFePO_4||Li cell shows excellent capacity retention of 85.3%over 600 cycles at 0.5 C. 展开更多
关键词 Solid polymer electrolytes Safe Li metal batteries Li dendrites Hydroxyapatite N-methyl pyrrolidone PVDF-HFP Fireproof property
下载PDF
Effects of Al,F dual substitutions on the structure and electrochemical properties of lithium manganese oxide 被引量:1
6
作者 Tingfeng Yi Xinguo Hu +1 位作者 dianlong wang Huibin Huo 《Journal of University of Science and Technology Beijing》 CSCD 2008年第2期182-186,共5页
Spinel LiMn2O4 and F, Al-doped spinel LiAl0.05Mn1.95O3.58F0.02 have been synthesized by a soft chemistry method using adipic acid as the chelating agent. The synthesized spine/materials were characterized by different... Spinel LiMn2O4 and F, Al-doped spinel LiAl0.05Mn1.95O3.58F0.02 have been synthesized by a soft chemistry method using adipic acid as the chelating agent. The synthesized spine/materials were characterized by differential thermal analysis (DTA) and thermogravimetery (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and chargedischarge testing. The results indicate that all the samples have high phase purity, and fluorine is important in controlling the morphology; the doped aluminum enhances the stability of spinel LiMn2O4. The charge-discharge tests indicate that LiAl0.05Mn1.95O4 has high capacity retention, which is 92.60% of the initial after 50 cycles. It is found that the novel compound LiAl0.05Mn1.95O3.98F0.02 with smaller particles can offer much higher capacity, whose initial discharge capacity is 126.5 mAh·g^-1. The cyclic voltammetric experiments disclose the enhanced reversibility of the F, Al^3+-modified spinel as compared with the undoped spinel. 展开更多
关键词 lithium ion battery cathode material soft chemistry method STRUCTURE electrochemical properties
下载PDF
Facile synthesis of a novel P-doped carbon coated nickel phosphides nanorods as sodium storage anode materials
7
作者 Qiuchen He Yong Li +1 位作者 dianlong wang Jingying Xie 《Journal of Materiomics》 SCIE CSCD 2024年第2期408-415,共8页
Nickel-based phosphides as anode materials of sodium ion batteries have high capacity,but poor cycle stability and low electrical conductivity.Rational structural design for nickel-based phosphides with carbon provide... Nickel-based phosphides as anode materials of sodium ion batteries have high capacity,but poor cycle stability and low electrical conductivity.Rational structural design for nickel-based phosphides with carbon provides a new way to address the above shortcomings.This paper presents a simple method to synthesize a novel carbon coated Ni_(x)P(x=2.4-3.0,denoted as Ni_(x)P@PC)nanorods using phosphoric acid resin as phosphorus and carbon sources.The Ni_(x)P nanocrystals are in-situ generated in the P-doped carbon without further phosphatization.The carbon layer can confine the volume changes during charging/discharging process.Additionally,the enriched P doping in the carbon layer greatly increases the electrical conductivity of the Ni_(x)P-based composite and provides more active sites for sodium storage.The as-obtained Ni_(x)P@PC nanorods reveal excellent reversible sodium storage performance(271.6 mA·h/g based on the mass of Ni_(x)P@PC at 0.1 A/g after 300 cycles)and outstanding cycling stability(0.005%capacity decay per cycle after 5000 cycles at 2 A/g).Meanwhile,the formation mechanism of Ni_(x)P@PC is evidenced by monitoring the evolution of morphology and structure during the preparing process.This paper may provide a feasible way for constructing high-performance transitional metal compounds for sodium-ion batteries. 展开更多
关键词 Nickel phosphide Ni_(x)P nanorods Sodium ion battery Cycling stability
原文传递
Recent advances in cathodes for all-solid-state lithium-sulfur batteries
8
作者 Shengbo Yang Bo wang +8 位作者 Qiang Lv Nan Zhang Zekun Zhang Yutong Jing Jinbo Li Rui Chen Bochen Wu Pengfei Xu dianlong wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期58-69,共12页
Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance o... Lithium-sulfur(Li-S)batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity(1675 m Ah/g), energy density(2600 Wh/kg)and the abundance of elemental sulfur, but the application of Li-S batteries is impeded by a series of problems. Recently, all-solid-state Li-S batteries(ASSLSBs) have drawn great attention because many drawbacks such as safety issues caused by metallic lithium anodes and organic liquid electrolytes can be overcome through the use of solid-state electrolytes(SEs). However, not only the problems brought by sulfur cathodes still exist, but more trouble arouses from the interfaces between SEs and cathodes, hampering the practical application of ASSLSBs. Therefore, in order to deal with the problems, enormous endeavors have been done on ASSLSB cathodes during the past few decades, including engineering of cathode active materials, cathode host materials, cathode binder materials and cathode structures. In this review, the electrochemical mechanism and existing problems of ASSLSBs are briefly introduced. Subsequently, the strategies for developing cathode materials and designing cathode structures are presented. Then there follows a brief discussion of SE problems and expectations, and finally, the challenges and perspectives of ASSLSBs are summarized. 展开更多
关键词 All-solid-state Li-S battery Cathode active material Cathode host material Cathode structure Solid-state electrolyte
原文传递
The enhanced X-ray Timing and Polarimetry mission—eXTP 被引量:18
9
作者 ShuangNan Zhang Andrea Santangelo +149 位作者 Marco Feroci YuPeng Xu FangJun Lu Yong Chen Hua Feng Shu Zhang Sφren Brandt Margarita Hernanz Luca Baldini Enrico Bozzo Riccardo Campana Alessandra De Rosa YongWei Dong Yuri Evangelista Vladimir Karas Norbert Meidinger Aline Meuris Kirpal Nandra Teng Pan Giovanni Pareschi Piotr Orleanski QiuShi Huang Stephane Schanne Giorgia Sironi Daniele Spiga Jiri Svoboda Gianpiero Tagliaferri Christoph Tenzer Andrea Vacchi Silvia Zane Dave Walton ZhanShan wang Berend Winter Xin Wu Jean J.M.in't Zand Mahdi Ahangarianabhari Giovanni Ambrosi Filippo Ambrosino Marco Barbera Stefano Basso Jörg Bayer Ronaldo Bellazzini Pierluigi Bellutti Bruna Bertucci Giuseppe Bertuccio Giacomo Borghi XueLei Cao Franck Cadoux Francesco Ceraudo TianXiang Chen Yu Peng Chen Jerome Chevenez Marta Civitani Wei Cui WeiWei Cui Thomas Dauser Ettore Del Monte Sergio Di Cosimo Sebastian Diebold Victor Doroshenko Michal Dovciak YuanYuan Du Lorenzo Ducci QingMei Fan Yannick Favre Fabio Fuschino JoséLuis Ga'lvez Min Gao MingYu Ge Olivier Gevin Marco Grassi QuanYing Gu YuDong Gu DaWei Han Bin Hong Wei Hu Long Ji ShuMei Jia WeiChun Jiang Thomas Kennedy Ingo Kreykenbohm Irfan Kuvvetli Claudio Labanti Luca Latronico Gang Li MaoShun Li Xian Li Wei Li ZhengWei Li Olivier Limousin HongWei Liu XiaoJing Liu Bo Lu Tao Luo Daniele Macera Piero Malcovati Adrian Martindale Malgorzata Michalska Bin Meng Massimo Minuti Alfredo Morbidini Fabio Muleri Stephane Paltani Emanuele Perinati Antonino Picciotto Claudio Piemonte JinLu Qu Alexandre Rachevski Irina Rashevskaya Jerome Rodriguez Thomas Schanz ZhengXiang Shen LiZhi Sheng JiangBo Song LiMing Song Carmelo Sgro Liang Sun Ying Tan Phil Uttley Bo wang dianlong wang GuoFeng wang Juan wang LangPing wang YuSa wang Anna L.Watts XiangYang Wen Jörn Wilms ShaoLin Xiong JiaWei Yang Sheng Yang YanJi Yang Nian Yu WenDa Zhang Gianluigi Zampa Nicola Zampa Andrzej A.Zdziarski AiMei Zhang ChengMo Zhang Fan Zhang Long Zhang Tong Zhang Yi Zhang XiaoLi Zhang ZiLiang Zhang BaoSheng Zhao ShiJie Zheng Yu Peng Zhou Nicola Zorzi J.Frans Zwart 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第2期3-27,共25页
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m... In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment. 展开更多
关键词 X-ray instrumentation X-ray polarimetry X-ray timing space mission:eXTP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部