期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Reactivity Investigation on Iron-Titanium Oxides for a Moving Bed Chemical Looping Combustion Implementation
1
作者 diana c.campos Jamal Belkouch +1 位作者 Mourad Hazi Aissa Ould-Dris 《Advances in Chemical Engineering and Science》 2013年第1期47-56,共10页
Ilmenite-type natural ore which is constituted mainly of iron-titanium oxide is an interesting candidate as an oxygen carrier in chemical looping combustion (CLC) process. Its reactivity was investigated using methane... Ilmenite-type natural ore which is constituted mainly of iron-titanium oxide is an interesting candidate as an oxygen carrier in chemical looping combustion (CLC) process. Its reactivity was investigated using methane as reducing gas and air as oxidizing gas. Experiments were carried out in a coupled thermogravimetric–thermo differential analyzer (TGA-DTA). When temperature increases from 700℃ to 1000℃, the reaction rate increases by 50 times while the oxygen transfer capacity passes from 1.8% to 12%. TG-DT analyses showed that the overall mass loss due to ilmenite reduction reached at most 12%. It corresponds to 87% of theoretical mass loss due to the transformation of Fe2TiO5 into Fe and TiO2. It is established that the reduction for the iron-titanium oxides occurs in two steps: Fe2TiO5→ FeTiO3→ Fe + TiO2. The titanium reduction from the state TiO2 to the stage Ti3O5 was observed as well. This behavior is supported by XRD analysis. Subsequent oxidation of the reduced mineral led to recover the starting oxide. The stability of iron-titanium oxides was established over 35 looping cycles of oxidation-reduction, with an increase of 5% of oxygen transfer capacity and reactivity in the first 5 cycles and after that, ilmenite reactivity remained constant. At high temperatures, catalytic effect of ilmenite on methane decomposition leading to carbon deposition is observed. The deposited carbon participates in the reactivity of the oxide. 展开更多
关键词 ILMENITE Iron-Titanium Oxides Chemical Looping Combustion CLC METHANE REACTIVITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部