Pristine tin (Sn) and tin dioxide (SnO_(2)) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirabl...Pristine tin (Sn) and tin dioxide (SnO_(2)) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirable conductivity of Sn-based materials lead to undesirable specific capacity. In this work, a nanostructured Sn/SnO_(2)/nitrogen-doped carbon (NC) superstructure was prepared through a facile electrospray-carbonization strategy. The Sn/SnO_(2) nanoparticles (NPs) were uniformly dispersed in a spherical NC matrix, which prevented the volume expansion and aggregation of NPs and facilitated the ion diffusion and charge transfer kinetics. When the optimized Sn/SnO_(2)/NC superstructures were employed as lithium-ion battery anodes, a remarkable specific capacity of 747.9 mAh·g^(−1) over 200 cycles at 0.5 A·g^(−1) and a superior cyclability of 644.1 mAh·g^(−1) over 1000 cycles at 2 A·g^(−1) were obtained. This effective synthetic strategy for synthesizing superstructures provides valuable insights for the advancement of lithium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(No.52371240)Natural Science Foundation of Jiangsu Province(No.BK20230556)+1 种基金China Postdoctoral Science Foundation(No.2022M722686)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB701).
文摘Pristine tin (Sn) and tin dioxide (SnO_(2)) have sparked wide interest owing to their abundant resources and superior theoretical capacity. Nevertheless, the obvious volume expansion effect upon cycling and undesirable conductivity of Sn-based materials lead to undesirable specific capacity. In this work, a nanostructured Sn/SnO_(2)/nitrogen-doped carbon (NC) superstructure was prepared through a facile electrospray-carbonization strategy. The Sn/SnO_(2) nanoparticles (NPs) were uniformly dispersed in a spherical NC matrix, which prevented the volume expansion and aggregation of NPs and facilitated the ion diffusion and charge transfer kinetics. When the optimized Sn/SnO_(2)/NC superstructures were employed as lithium-ion battery anodes, a remarkable specific capacity of 747.9 mAh·g^(−1) over 200 cycles at 0.5 A·g^(−1) and a superior cyclability of 644.1 mAh·g^(−1) over 1000 cycles at 2 A·g^(−1) were obtained. This effective synthetic strategy for synthesizing superstructures provides valuable insights for the advancement of lithium-ion batteries.