CoQ is an essential electron cartier in the mitochondrial respiratory chain of both eukaryotes and prokaryotes. It consists of a benzoquinone head group and a hydrophobic polyisoprenoid tail. The genes (COQ1-9) invo...CoQ is an essential electron cartier in the mitochondrial respiratory chain of both eukaryotes and prokaryotes. It consists of a benzoquinone head group and a hydrophobic polyisoprenoid tail. The genes (COQ1-9) involved in CoQ biosynthesis have been characterized in yeast. In this study, we generated and molecularly characterized a mutant allele of a novel Drosophila gene, sbo, which encodes a protein that is predicted to catalyze the prenylation of p-hydroxybenzoate with the isoprenoid chain during the process of CoQ synthesis. Expression of sbo in yeast rescues the lethality of ACOQ2 mutant cells, indicating that sbo is a functional homolog of COQ2. HPLC results show that the levels of CoQ9 and COQlo were significantly reduced in sbo heterozygous adult flies. Furthermore, the mean lifespans of males and females heterozygous for sbo are extended by 12.5% and 30.8%, respectively. Homozygous sbo animals exhibit reduced activities of the insulin/insulin-like growth factor signaling (IIS) pathway. Taken together, we conclude that sbo is an essential gene for Drosophila development, mutation of which leads to an extension of lifespan most likely by altering endogenous CoQ biosynthesis.展开更多
基金supported by the National Science Foundation of China(Nos.31071087 and 30771217) the National Basic Research Program(973 Program)(No. 2009CB918702)
文摘CoQ is an essential electron cartier in the mitochondrial respiratory chain of both eukaryotes and prokaryotes. It consists of a benzoquinone head group and a hydrophobic polyisoprenoid tail. The genes (COQ1-9) involved in CoQ biosynthesis have been characterized in yeast. In this study, we generated and molecularly characterized a mutant allele of a novel Drosophila gene, sbo, which encodes a protein that is predicted to catalyze the prenylation of p-hydroxybenzoate with the isoprenoid chain during the process of CoQ synthesis. Expression of sbo in yeast rescues the lethality of ACOQ2 mutant cells, indicating that sbo is a functional homolog of COQ2. HPLC results show that the levels of CoQ9 and COQlo were significantly reduced in sbo heterozygous adult flies. Furthermore, the mean lifespans of males and females heterozygous for sbo are extended by 12.5% and 30.8%, respectively. Homozygous sbo animals exhibit reduced activities of the insulin/insulin-like growth factor signaling (IIS) pathway. Taken together, we conclude that sbo is an essential gene for Drosophila development, mutation of which leads to an extension of lifespan most likely by altering endogenous CoQ biosynthesis.