The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifu...The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifunctional nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles)-mediated triple-readout aptasensor for accurate and reliable detection of diethylstilbestrol (DES), in which Ce-MOF@PdNPs exhibited excellent peroxidase (POD)-like activity, fluormetric, and electro conductive properties. In addition, enzymes-assisted target recycling amplification was utilized to improve the sensitivity, that is the specific binding of aptamer and DES triggered an Exo III enzyme-assisted recycling reaction. The generated F-DNA was captured by the H3 strand linked to Ce-MOF@PdNPs immobilized on the electrode, exposing cleavage sites and activating the Nt.BbvCI enzyme-assisted recycling reaction, leading to the dissociation of Ce-MOF@PdNPs and a significant reduced electrochemical signal. The collected Ce-MOF@PdNPs solution also induced a proportional change in the color and fluorescence, achieving a colorimetric and fluormetric detection functionality. The detection limit under colorimetric mode was 0.16 and 0.76 ng/mL under fluorescence mode, and 0.87 pg/mL under electrochemical mode. This triple-readout aptasensor exhibits high sensitivity, selectivity and accuracy, providing a new idea for designing novel biosensing platforms for veterinary drug residue detection.展开更多
基金supported by Jiangsu Agriculture Science and Technology Innovation Fund(No.CX(22)3006)National Natural Science Foundation of China(Nos.32272449 and 32072310)+1 种基金the Fundamental Research Funds for the Central Universities(No.JUSRP622025)Collaborative innovation center of food safety and quality control in Jiangsu Province.
文摘The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifunctional nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles)-mediated triple-readout aptasensor for accurate and reliable detection of diethylstilbestrol (DES), in which Ce-MOF@PdNPs exhibited excellent peroxidase (POD)-like activity, fluormetric, and electro conductive properties. In addition, enzymes-assisted target recycling amplification was utilized to improve the sensitivity, that is the specific binding of aptamer and DES triggered an Exo III enzyme-assisted recycling reaction. The generated F-DNA was captured by the H3 strand linked to Ce-MOF@PdNPs immobilized on the electrode, exposing cleavage sites and activating the Nt.BbvCI enzyme-assisted recycling reaction, leading to the dissociation of Ce-MOF@PdNPs and a significant reduced electrochemical signal. The collected Ce-MOF@PdNPs solution also induced a proportional change in the color and fluorescence, achieving a colorimetric and fluormetric detection functionality. The detection limit under colorimetric mode was 0.16 and 0.76 ng/mL under fluorescence mode, and 0.87 pg/mL under electrochemical mode. This triple-readout aptasensor exhibits high sensitivity, selectivity and accuracy, providing a new idea for designing novel biosensing platforms for veterinary drug residue detection.