Heat waves associated with global warming and extreme climates would arouse serious consequences on nitrogen(N)cycle.However,the responses of the functional guilds to different temperatures,especially high temperature...Heat waves associated with global warming and extreme climates would arouse serious consequences on nitrogen(N)cycle.However,the responses of the functional guilds to different temperatures,especially high temperature and the cascading effect on N_(2)O emissions remain unclear.An incubation study was conducted to examine the effect of different temperatures(20°C,30°C,and 40°C)and fertilizer types(urea and manure)on N_(2)O-producers and N_(2)O-reducers,as well as the efficacy of dicyandiamide(DCD)on N_(2)O emissions in a vegetable soil.Results showed that ammonia oxidizers and nirS-type denitrifiers were well adapted to high temperature(40°C)with manure application,while the fungal nirK-denitrifiers had better tolerance with urea application.The nosZ clade I microbes had a strong adaptability to various temperatures regardless of fertilization type,while the growth of nosZ clade II group microbes in non-fertilized soil(control)were significantly inhibited at higher temperature.The N_(2)O emissions were significantly decreased with increasing temperature and DCD application(up to 60%,even at 40°C).Under high temperature conditions,fungal denitrifiers play a significant role in N-limited soils(non-fertilized)while nirS-type denitrifiers was more important in fertilized soils in N_(2)O emissions,which should be specially targeted when mitigating N_(2)O emissions under global warming climate.展开更多
基金funded by the National Key Research and Development Program of China(2022YFD1900602)Provincial Key Research and Development Program of Zhejiang(2022C02046)+2 种基金Zhejiang Provincial Natural Science Foundation of China(LR23D010002)the National Natural Science Foundation of China(42107316)the Natural Science Foundation of Shandong Province(ZR202102260221).
文摘Heat waves associated with global warming and extreme climates would arouse serious consequences on nitrogen(N)cycle.However,the responses of the functional guilds to different temperatures,especially high temperature and the cascading effect on N_(2)O emissions remain unclear.An incubation study was conducted to examine the effect of different temperatures(20°C,30°C,and 40°C)and fertilizer types(urea and manure)on N_(2)O-producers and N_(2)O-reducers,as well as the efficacy of dicyandiamide(DCD)on N_(2)O emissions in a vegetable soil.Results showed that ammonia oxidizers and nirS-type denitrifiers were well adapted to high temperature(40°C)with manure application,while the fungal nirK-denitrifiers had better tolerance with urea application.The nosZ clade I microbes had a strong adaptability to various temperatures regardless of fertilization type,while the growth of nosZ clade II group microbes in non-fertilized soil(control)were significantly inhibited at higher temperature.The N_(2)O emissions were significantly decreased with increasing temperature and DCD application(up to 60%,even at 40°C).Under high temperature conditions,fungal denitrifiers play a significant role in N-limited soils(non-fertilized)while nirS-type denitrifiers was more important in fertilized soils in N_(2)O emissions,which should be specially targeted when mitigating N_(2)O emissions under global warming climate.