Wearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wir...Wearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO_(2)/C nanofibers (TiO_(2) ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire- in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ulti-mately, TiO_(2) ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g^(−1) at 5 A g^(−1) after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO_(2) has a large diffusion barrier of K^(+), TiO_(2) ww/CN film demonstrates excellent perfor-mance (259 mAh g^(−1) at 0.05 A g^(−1) after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO_(2) ww/CN film anode and LiFePO_(4)/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51672234,52072325)the Key Research Foundation of Education Bureau of Hunan Province,China(Grant No.20A486)+1 种基金Hunan 2011 Collaborative Innovation Center of Chemical Engineering and Technology with Environmental Benignity and Effective Resource Utilization,Program for Innovative Research Cultivation Team in University of Ministry of Education of China(1337304)the 111 Project(B12015).
文摘Wearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO_(2)/C nanofibers (TiO_(2) ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire- in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ulti-mately, TiO_(2) ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g^(−1) at 5 A g^(−1) after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO_(2) has a large diffusion barrier of K^(+), TiO_(2) ww/CN film demonstrates excellent perfor-mance (259 mAh g^(−1) at 0.05 A g^(−1) after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO_(2) ww/CN film anode and LiFePO_(4)/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.