期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer 被引量:2
1
作者 Sergio Castro-Hermosa Luana Wouk +5 位作者 Izabela Silva Bicalho Luiza de Queiroz Correa Bas de Jong Lucio Cina Thomas M.Brown diego bagnis 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1034-1042,共9页
Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick pr... Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick printed bathocuproine(BCP)hole blocking buffer using blade coating and deposited at relative humidity up to 50%.The PSCs with a p-i-n structure(glass/indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)/CH_(3)NH_(3)Pbl_(3)/[6,6]-phenyl-C_(61)-butyric acid methyl ester(PCBM)/BCP/Ag)delivered a maximum power conversion efficiency(PCE)of 14.9%on an active area of 0.5 cm^(2)when measured under standard test conditions.The PSCs with a blade coated BCP delivered performance of 10%and 63%higher(in relative terms)than those incorporating a spin coated BCP or without any BCP film,respectively.The atomic force microscopy(AFM)showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination.The demonstration of 15%efficient devices with all constituent layers,including nanometer-thick BCP(〜10 nm),deposited by blade coating in air,demonstrates a route for industrialization of this technology. 展开更多
关键词 PEROVSKITE BUFFER bathocuproine(BCP) blade coating printed electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部