期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Forecasting Damage Mechanics By Deep Learning 被引量:1
1
作者 Duyen Le Hien Nguyen dieu thi thanh do +2 位作者 Jaehong Lee Timon Rabczuk Hung Nguyen-Xuan 《Computers, Materials & Continua》 SCIE EI 2019年第9期951-977,共27页
We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a signif... We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays.Relied on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict solutions.Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus shale.The predicted results by deep learning algorithms are well-agreed with experimental data. 展开更多
关键词 Damage mechanics time series forecasting deep learning long short-term memory multi-layer neural networks hydraulic fracturing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部