Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupyin...Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupying a large period of the year, thus requiring not only sustainable construction materials, but also which provide thermal comfort in the building by limiting the energy demand for air conditioning. These qualifications are important for sub-Saharan African countries in general and those of the Sudano-Sahelian zone in particular, which need ecological materials with good thermal performance to limit heating inside buildings. This study is an energy recovery of agricultural waste in buildings with a view to offering the populations of the northern regions of Cameroon suitable materials at lower cost for the construction of buildings. The soil used for this study was extracted from the locality of Yagoua where the populations make abundant use of mud bricks. Fonio waste was incorporated at low levels into the earth bricks, particularly at 0%, 1%, 2%, 3%, and 4%, with a view to strengthening their thermophysical and mechanical properties. The results obtained indicate that earth bricks reinforced with 4% waste showed better thermal and mechanical insulation properties compared to other formulations with an improvement of 16% and 78% respectively compared to the unreinforced samples. This research allows us to conclude that fonio waste can be used practically without expense in the building with a view to its energy recovery and will promote not only thermal comfort and the limitation of the energy supply for air conditioning, but the construction of more sustainable buildings with a cleaner environment.展开更多
During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance...During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.展开更多
This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for t...This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for the manufacture of O-rings has been developed, with properties close to those found on the market. The process includes an experimental methodology of a sulfur vulcanization system choice and the quantification of ingredients, as well as the experimental determination of cure parameters. Mechanical tests on the samples completed the work by providing the mechanical characteristics of both unaged and aged (thermo-oxidative ageing) novel material. This process has a high potential for sustainable development and industrialization, making it a valuable contribution to the recycling of rubber in African developing countries.展开更多
Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and wate...Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and water are abundant and available. As part of this research, we are carrying out a technical and economic study on the availability of renewable energy in Cameroon, with a view to combining several sources of solar, biomass, wind and hydroelectric power to meet energy demand both inside and outside the country, in countries such as Chad, Gabon and Nigeria. In this work, the implementation of the entire system in the HOMER software demonstrates the feasibility and possibility of implementing a multi-source power plant based on renewable energies. Calculation of the levelized cost of energy (LCOE) and the net present cost (NPC) shows that a capacity of 485 GW can meet the energy demand of the countries bordering Cameroon. Furthermore, the calculation of the performance ratio gives a PR = 46.52 and a Capacity factor of CF = 11.64. The system is profitable not only economically but also environmentally, as it reduces greenhouse gas emissions and energy losses.展开更多
文摘Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupying a large period of the year, thus requiring not only sustainable construction materials, but also which provide thermal comfort in the building by limiting the energy demand for air conditioning. These qualifications are important for sub-Saharan African countries in general and those of the Sudano-Sahelian zone in particular, which need ecological materials with good thermal performance to limit heating inside buildings. This study is an energy recovery of agricultural waste in buildings with a view to offering the populations of the northern regions of Cameroon suitable materials at lower cost for the construction of buildings. The soil used for this study was extracted from the locality of Yagoua where the populations make abundant use of mud bricks. Fonio waste was incorporated at low levels into the earth bricks, particularly at 0%, 1%, 2%, 3%, and 4%, with a view to strengthening their thermophysical and mechanical properties. The results obtained indicate that earth bricks reinforced with 4% waste showed better thermal and mechanical insulation properties compared to other formulations with an improvement of 16% and 78% respectively compared to the unreinforced samples. This research allows us to conclude that fonio waste can be used practically without expense in the building with a view to its energy recovery and will promote not only thermal comfort and the limitation of the energy supply for air conditioning, but the construction of more sustainable buildings with a cleaner environment.
文摘During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.
文摘This paper outlines a mechanical transformation process for rubber recycling, demonstrating the development of a new material from used tires. With the crumbs obtained using a crusher-compactor, a novel material for the manufacture of O-rings has been developed, with properties close to those found on the market. The process includes an experimental methodology of a sulfur vulcanization system choice and the quantification of ingredients, as well as the experimental determination of cure parameters. Mechanical tests on the samples completed the work by providing the mechanical characteristics of both unaged and aged (thermo-oxidative ageing) novel material. This process has a high potential for sustainable development and industrialization, making it a valuable contribution to the recycling of rubber in African developing countries.
文摘Renewable energy is increasingly in demand for a variety of applications in both urban and rural areas. There are, however, a number of implementation constraints in some countries, even though sunshine, wind and water are abundant and available. As part of this research, we are carrying out a technical and economic study on the availability of renewable energy in Cameroon, with a view to combining several sources of solar, biomass, wind and hydroelectric power to meet energy demand both inside and outside the country, in countries such as Chad, Gabon and Nigeria. In this work, the implementation of the entire system in the HOMER software demonstrates the feasibility and possibility of implementing a multi-source power plant based on renewable energies. Calculation of the levelized cost of energy (LCOE) and the net present cost (NPC) shows that a capacity of 485 GW can meet the energy demand of the countries bordering Cameroon. Furthermore, the calculation of the performance ratio gives a PR = 46.52 and a Capacity factor of CF = 11.64. The system is profitable not only economically but also environmentally, as it reduces greenhouse gas emissions and energy losses.