期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Iron Species-Impregnated Granular Activated Carbon as Modified Particle Electrodes Applied in Benzothiazole Adsorption and Electrocatalytic Degradation 被引量:2
1
作者 jie ding dihui song +2 位作者 xianshu liu zhao song gaofeng wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第3期39-49,共11页
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.... The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%. 展开更多
关键词 MODIFIED ACTIVATED carbon iron particle electrodes BENZOTHIAZOLE ADSORPTION ELECTROCATALYTIC degreadation
下载PDF
Effect of Co-substrate on Degradation of Benzothiazole in MEC
2
作者 Huandi Huang Jie Ding +2 位作者 Xianshu Liu Guojun Xie dihui song 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第5期62-68,共7页
Due to its persistence and bio-toxicity,benzothiazole(BTH) cannot be biodegraded efficiently.Recent work has shown that removal rates of biorefractory organics can be enhanced by the addition of cosubstrates.In this w... Due to its persistence and bio-toxicity,benzothiazole(BTH) cannot be biodegraded efficiently.Recent work has shown that removal rates of biorefractory organics can be enhanced by the addition of cosubstrates.In this work,ethanol,acetate,propionate and butyrate were added as co-substrates in order to promote the degradation of BTH in microbial electrolysis cell(MEC).By probing the changes in degradation rates of BTH in the presence of different co-substrates,it was observed that all the four co-substrates can enhance the BTH degradation in MEC,both the efficiency(EBTH) and the rate(RBTH).It was also found that acetate is more effective than others,which made the degradation efficiency of BTH up to 90% with acetate-C at350 mg/L(measuring by the carbon content of co-substrate,the same below),within 6 h and the degradation rate of BTH arrived 0.001 2/(mg·h).The microbacteria in MEC have also been influenced by different cosubstrates.This metabolism of the co-substrates enables the microbacteria on anode to generate ATP and thus grow to ensure the microbacteria activity.Therefore,this work showed that the addition of co-substrates such as acetate can be a novel and efficient approach for improving the elimination of BTH from wastewaters by MEC system. 展开更多
关键词 MEC BENZOTHIAZOLE CO-SUBSTRATE ACETATE
下载PDF
厌氧E-MBR反应器在焦化废水处理中的微生物特性研究 被引量:2
3
作者 杨爽 宋迪慧 +5 位作者 安路阳 张立涛 柳丽芬 屈泽鹏 徐歆未 李红欣 《微生物学报》 CAS CSCD 北大核心 2021年第8期2427-2441,共15页
【目的】将厌氧的膜生物反应器(MBR)与微生物燃料电池(MFC)耦合的厌氧电辅助膜生物反应器(E-MBR)应用于实际工业焦化废水处理。【方法】通过正交实验优化了反应器进水的培养条件为PO_(4)^(3-)14.3 mg/L、Fe^(2+)0.2 mg/L、Fe^(3+)0.1 m... 【目的】将厌氧的膜生物反应器(MBR)与微生物燃料电池(MFC)耦合的厌氧电辅助膜生物反应器(E-MBR)应用于实际工业焦化废水处理。【方法】通过正交实验优化了反应器进水的培养条件为PO_(4)^(3-)14.3 mg/L、Fe^(2+)0.2 mg/L、Fe^(3+)0.1 mg/L、Co^(2+)0.1 mg/L和Mn^(2+)0.2 mg/L。在此条件下考察了该反应器对系统中有机污染物的去除效率及厌氧污泥的污泥特性、产电性能、胞外聚合物(EPS)、微生物群落结构及膜污染的影响。【结果】结果表明,与未优化的培养条件相比,工业焦化废水COD的去除率提高了23%;污泥浓度(MLSS)、比重、沉降速度增加,污泥体积指数(SVI)降低,表明污泥颗粒化及沉降性能提高;污泥中溶解性EPS(SMP)、松散态EPS(LB-EPS)及紧密结合态EPS(TB-EPS)这3种组分中的蛋白质与多糖的比例(P/C)分别降低0.12、0.25和0.16,表明污泥更易于被降解;厌氧污泥的产电性能增强;高通量分子测序结果表明,反应器中污泥的群落结构发生了明显的变化,优势菌群突出;经扫描电镜(SEM)对比结果表明,反应器阴极膜的污染情况也得到了一定的减缓。【结论】优化进水培养条件可以达到使反应器污水处理效率提高、清理周期缩短和运行更稳定等效果,对于工业废水处理技术的节能环保方面提供一定的理论依据。 展开更多
关键词 厌氧电辅助膜生物反应器 正交优化实验 污泥特性 导电性能 微生物群落结构 膜污染
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部