Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations i...Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. haczianum. In addition, T. hat-zianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. hat-zianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species (ROS) and enhance plant growth through accessing more nutrients by root system.展开更多
Endophytic bacteria from halophytes have a wide range of application prospects in various fields,such as plant growth-promoting,biocontrol activity and stress resistance.The current study aimed to identify cultivable ...Endophytic bacteria from halophytes have a wide range of application prospects in various fields,such as plant growth-promoting,biocontrol activity and stress resistance.The current study aimed to identify cultivable endophytic bacteria associated with halophytes grown in the salt-affected soil in Xinjiang Uygur Autonomous Region,China and to evaluate their plant beneficial traits and enzyme-producing activity.Endophytic bacteria were isolated from Reaumuria soongorica(PalL Maxim.),Artemisia carvifolia(Buch.-Ham.ex Roxb.Hort.Beng.),Peganum harmala L.and Suaeda dendroides(C.A.Mey.Moq.)by using the cultural-dependent method.Then we classified these bacteria based on the difference between their sequences of 16S rRNA(16S ribosomal RNA)gene.Results showed that the isolated bacteria from R.soongorica belonged to the genera Brucella,Bacillus and Variovorax.The bacteria from A.carvifolia belonged to the genera Micromonospora and Brucella.The bacteria from P.harmala belonged to the genera Paramesorhizobium,Bacillus and Peribacillus.The bacteria from S.dendroides belonged to the genus Bacillus.Notably,the genus Bacillus was detected in the three above plants,indicating that Bacillus is a common taxon of endophytic bacteria in halophytes.And,our results found that about 37.50%of the tested strains showed strong protease-producing activity,6.25%of the tested strains showed strong cellulase-producing activity and 12.50%of the tested strains showed moderate lipase-producing activity.Besides,all isolated strains were positive for IAA(3-Indoleacetic acid)production,31.25%of isolated strains exhibited a moderate phosphate solubilization activity and 50.00%of isolated strains exhibited a weak siderophore production activity.Our findings suggest that halophytes are valuable resources for identifying microbes with the ability to increase host plant growth and health in salt-affected soils.展开更多
Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current stud...Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb.ex Boiss.grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance.Bacteria were isolated from the roots and the shoots of S.rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene.RFLP(Restriction Fragment Length Polymorphism)analysis was conducted to eliminate similar isolates.Results showed that the isolates from the roots of S.rosmarinus belonged to the genera Rothia,Kocuria,Pseudomonas,Staphylococcus,Paenibacillus and Brevibacterium.The bacterial isolates from the shoots of S.rosmarinus belonged to the genera Staphylococcus,Rothia,Stenotrophomonas,Brevibacterium,Halomonas,Planococcus,Planomicrobium and Pseudomonas,which differed from those of the roots.Notably,Staphylococcus,Rothia and Brevibacterium were detected in both roots and shoots,indicating possible migration of some species from roots to shoots.The root-associated bacteria showed higher levels of IAA(indole-3-acetic acid)synthesis compared with those isolated from the shoots,as well as the higher production of ACC(1-aminocyclopropane-1-carboxylate)deaminase.Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.展开更多
基金the Deanship of Scientific Research at King Saud University,Saudi Arabia(RGP-271)
文摘Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. haczianum. In addition, T. hat-zianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. hat-zianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species (ROS) and enhance plant growth through accessing more nutrients by root system.
基金This research was supported by the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project(Shanghai Cooperation Organization Science and Technology Partnership Program)(2020E01047)the National Natural Science Foundation of China(U1703106,32061143043,91751206)The authors acknowledge the anonymous reviewers for their constructive comments on the manuscript.
文摘Endophytic bacteria from halophytes have a wide range of application prospects in various fields,such as plant growth-promoting,biocontrol activity and stress resistance.The current study aimed to identify cultivable endophytic bacteria associated with halophytes grown in the salt-affected soil in Xinjiang Uygur Autonomous Region,China and to evaluate their plant beneficial traits and enzyme-producing activity.Endophytic bacteria were isolated from Reaumuria soongorica(PalL Maxim.),Artemisia carvifolia(Buch.-Ham.ex Roxb.Hort.Beng.),Peganum harmala L.and Suaeda dendroides(C.A.Mey.Moq.)by using the cultural-dependent method.Then we classified these bacteria based on the difference between their sequences of 16S rRNA(16S ribosomal RNA)gene.Results showed that the isolated bacteria from R.soongorica belonged to the genera Brucella,Bacillus and Variovorax.The bacteria from A.carvifolia belonged to the genera Micromonospora and Brucella.The bacteria from P.harmala belonged to the genera Paramesorhizobium,Bacillus and Peribacillus.The bacteria from S.dendroides belonged to the genus Bacillus.Notably,the genus Bacillus was detected in the three above plants,indicating that Bacillus is a common taxon of endophytic bacteria in halophytes.And,our results found that about 37.50%of the tested strains showed strong protease-producing activity,6.25%of the tested strains showed strong cellulase-producing activity and 12.50%of the tested strains showed moderate lipase-producing activity.Besides,all isolated strains were positive for IAA(3-Indoleacetic acid)production,31.25%of isolated strains exhibited a moderate phosphate solubilization activity and 50.00%of isolated strains exhibited a weak siderophore production activity.Our findings suggest that halophytes are valuable resources for identifying microbes with the ability to increase host plant growth and health in salt-affected soils.
基金the Eurasia Program of the Norwegian Centre for Cooperation in Education(CPEA-LT-2016/10095)the German Academic Exchange Service(DAAD)the President's International Fellowship Initiative of the Chinese Academy of Sciences(2018VBA002S).
文摘Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb.ex Boiss.grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance.Bacteria were isolated from the roots and the shoots of S.rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene.RFLP(Restriction Fragment Length Polymorphism)analysis was conducted to eliminate similar isolates.Results showed that the isolates from the roots of S.rosmarinus belonged to the genera Rothia,Kocuria,Pseudomonas,Staphylococcus,Paenibacillus and Brevibacterium.The bacterial isolates from the shoots of S.rosmarinus belonged to the genera Staphylococcus,Rothia,Stenotrophomonas,Brevibacterium,Halomonas,Planococcus,Planomicrobium and Pseudomonas,which differed from those of the roots.Notably,Staphylococcus,Rothia and Brevibacterium were detected in both roots and shoots,indicating possible migration of some species from roots to shoots.The root-associated bacteria showed higher levels of IAA(indole-3-acetic acid)synthesis compared with those isolated from the shoots,as well as the higher production of ACC(1-aminocyclopropane-1-carboxylate)deaminase.Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils.