The bulk of the world’s millet crop is produced by India,Nigeria,Niger,Mali,Burkina Faso,Chad,and China.Finger millet(Eleusine coracana(L.)Gaertn),little millet(Panicum sumatrense Roth ex Roem.&Schult.),foxtail m...The bulk of the world’s millet crop is produced by India,Nigeria,Niger,Mali,Burkina Faso,Chad,and China.Finger millet(Eleusine coracana(L.)Gaertn),little millet(Panicum sumatrense Roth ex Roem.&Schult.),foxtail millet(Setaria italica(L.)P.Beauvois)and proso millet(Panicum miliaceum L.)are most commonly found species among various millet varieties.In India,finger millet occupy the largest area under cultivation among the small millets.Finger millet stands unique among the cereals such as barley,rye and oats with higher nutritional contents and has outstanding properties as a subsistence food crop.It is rich in calcium(0.34%),dietary fiber(18%),phytates(0.48%),protein(6%–13%)minerals(2.5%–3.5%),and phenolics(0.3%–3%).Moreover,it is also a rich source of thiamine,riboflavin,iron,methionine,isoleucine,leucine,phenylalanine and other essential amino acids.The abundance of these phytochemicals enhances the nutraceutical potential of finger millet,making it a powerhouse of health benefiting nutrients.It has distinguished health beneficial properties,such as anti-diabetic(type 2 diabetes mellitus),anti-diarrheal,antiulcer,anti-inflammatory,antitumerogenic(K562 chronic myeloid leukemia),atherosclerogenic effects,antimicrobial and antioxidant properties.展开更多
Application of plant growth-promoting bacteria(PGPB)is an environmentally sustainable option to reduce the effects of abiotic and biotic stresses on plant growth and productivity.Three 1-aminocyclopropane-1-carboxylic...Application of plant growth-promoting bacteria(PGPB)is an environmentally sustainable option to reduce the effects of abiotic and biotic stresses on plant growth and productivity.Three 1-aminocyclopropane-1-carboxylic acid(ACC)deaminase-producing drought-tolerant bacteria were isolated from a rain-fed agriculture field in the Central Himalaya of Kumaun region,Uttarakhand,India and evaluated for their efficiency in improving finger millet(Eleusine coracana(L.)Gaertn.)plant growth under non-stressed and drought-stressed conditions.These bacteria withstood a substrate metric potential of -1.0 MPa(30% polyethylene glycol 8000)and therefore were considered drought-tolerant.These strains were identified as Pseudomonas spp.by fatty acid methyl ester analysis and 16S rRNA gene sequencing.The ACC deaminase activity of these strains was characterized at the biochemical level,and the presence of acd S gene,the structural gene for ACC deaminase,was confirmed by the polymerase chain reaction.Two sets of pot trials in glass house were set up,one for normal(non-stressed)and the other for drought-stressed conditions.After 5 weeks,one set of plants was subjected to drought stress for 5 d,while the other set continued to be watered.The same growth parameters were recorded for both sets of plants after 40 d of plant growth.The results of pot trials showed that treatments inoculated with ACC deaminase-producing bacterial strains significantly improved the growth performance of finger millet plants and foliar nutrient content as compared to uninoculated treatments under both non-stressed and drought-stressed conditions.In addition,a significant increase in antioxidant activity was observed,wherein bacterial stain inoculation improved plant fitness by protecting it from oxidative damage induced by drought.展开更多
文摘The bulk of the world’s millet crop is produced by India,Nigeria,Niger,Mali,Burkina Faso,Chad,and China.Finger millet(Eleusine coracana(L.)Gaertn),little millet(Panicum sumatrense Roth ex Roem.&Schult.),foxtail millet(Setaria italica(L.)P.Beauvois)and proso millet(Panicum miliaceum L.)are most commonly found species among various millet varieties.In India,finger millet occupy the largest area under cultivation among the small millets.Finger millet stands unique among the cereals such as barley,rye and oats with higher nutritional contents and has outstanding properties as a subsistence food crop.It is rich in calcium(0.34%),dietary fiber(18%),phytates(0.48%),protein(6%–13%)minerals(2.5%–3.5%),and phenolics(0.3%–3%).Moreover,it is also a rich source of thiamine,riboflavin,iron,methionine,isoleucine,leucine,phenylalanine and other essential amino acids.The abundance of these phytochemicals enhances the nutraceutical potential of finger millet,making it a powerhouse of health benefiting nutrients.It has distinguished health beneficial properties,such as anti-diabetic(type 2 diabetes mellitus),anti-diarrheal,antiulcer,anti-inflammatory,antitumerogenic(K562 chronic myeloid leukemia),atherosclerogenic effects,antimicrobial and antioxidant properties.
基金the Indo-Australian project for providing financial support for this study
文摘Application of plant growth-promoting bacteria(PGPB)is an environmentally sustainable option to reduce the effects of abiotic and biotic stresses on plant growth and productivity.Three 1-aminocyclopropane-1-carboxylic acid(ACC)deaminase-producing drought-tolerant bacteria were isolated from a rain-fed agriculture field in the Central Himalaya of Kumaun region,Uttarakhand,India and evaluated for their efficiency in improving finger millet(Eleusine coracana(L.)Gaertn.)plant growth under non-stressed and drought-stressed conditions.These bacteria withstood a substrate metric potential of -1.0 MPa(30% polyethylene glycol 8000)and therefore were considered drought-tolerant.These strains were identified as Pseudomonas spp.by fatty acid methyl ester analysis and 16S rRNA gene sequencing.The ACC deaminase activity of these strains was characterized at the biochemical level,and the presence of acd S gene,the structural gene for ACC deaminase,was confirmed by the polymerase chain reaction.Two sets of pot trials in glass house were set up,one for normal(non-stressed)and the other for drought-stressed conditions.After 5 weeks,one set of plants was subjected to drought stress for 5 d,while the other set continued to be watered.The same growth parameters were recorded for both sets of plants after 40 d of plant growth.The results of pot trials showed that treatments inoculated with ACC deaminase-producing bacterial strains significantly improved the growth performance of finger millet plants and foliar nutrient content as compared to uninoculated treatments under both non-stressed and drought-stressed conditions.In addition,a significant increase in antioxidant activity was observed,wherein bacterial stain inoculation improved plant fitness by protecting it from oxidative damage induced by drought.